Skip to main content

Contemporary Problems in Quantitative Image Analysis in Structural Neuronal Plasticity

  • Chapter
  • First Online:

Abstract

In studies of the brain structure at the microscopic level the analysis of microscopic images is playing currently a dominant role. Insight into the processes of structural neuronal plasticity may be a key step towards understanding the bases of various neurodegenerative diseases. Almost in each experiment, there is a need for a quantitative analysis of brain tissue images. Such analysis often requires using elaborate computational tools, due to the rich structure present in the observed images. We review the most important problems encountered in the processes of analysis of fluorescent confocal microscopy images. Each of these problems suggests a dedicated computational approach.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Yamada, S., Nelson, W.J.: Synapses: sites of cell recognition, adhesion, and functional specification. Annu. Rev. Biochem. 76, 267–294 (2007)

    Article  Google Scholar 

  2. Harris, K.M., Weinberg, R.J.: Ultrastructure of synapses in the mammalian brain. Cold Spring Harb. Perspect. Biol. 4, 1–30 (2012)

    Article  Google Scholar 

  3. Alexander, M.J.H.: Glutamate. In: Squire, L. (ed.) Encyclopedia of Neuroscience. Elsevier, Oxford (2009)

    Google Scholar 

  4. Nimchinsky, E.A., Sabatini, B.L., Svoboda, K.: Structure and function of dendritic spines. Annu. Rev. Physiol. 64, 313–353 (2002)

    Article  Google Scholar 

  5. McKinney, R.A., Thompson, S.M.: Glutamate regulation of dendritic spine form and function. In: Squire, L. (ed.) Encyclopedia of Neuroscience. Elsevier, Oxford (2009)

    Google Scholar 

  6. Holtmaat, A., Svoboda, K.: Experience-dependent structural synaptic plasticity in the mammalian brain. Nat. Rev. Neurosci. 10, 647–658 (2009)

    Article  Google Scholar 

  7. Xu, T., Xinzhu, Yu., Perlik, A.J., Tobin, W.F., Zweig, J.A., Tennant, K., Jones, T., Zuo, Y.: Rapid formation and selective stabilization of synapses for enduring motor memories. Nature 462, 915–919 (2009)

    Article  Google Scholar 

  8. Yang, G., Pan, F., Gan, W.B.: Stably maintained dendritic spines are associated with lifelong memories. Nature 462, 920–924 (2009)

    Article  Google Scholar 

  9. Neves, G., Cooke, S.F., Bliss, T.V.: Synaptic plasticity, memory and the hippocampus: a neural network approach to causality Nat. Rev. Neurosci. 9, 65–75 (2008)

    Google Scholar 

  10. Hofer, S.B., Bonhoeffer, T.: Dendritic spines: the stuff that memories are made of? Curr. Biol. 20, 157–159 (2010)

    Article  Google Scholar 

  11. Bailey, C.H., Kandel, E.R.: Structural changes accompanying memory storage. Annu. Rev. Physiol. 55, 397–426 (1993)

    Article  Google Scholar 

  12. Luscher, C., Frerking, M.: Long-term depression (LTD): metabotropic glutamate receptor (mGluR) and NMDAR-dependent forms. In: Squire, L. (ed.) Encyclopedia of Neuroscience. Elsevier, Oxford (2009)

    Google Scholar 

  13. Sweatt, J.D.: Long-term potentiation (LTP). In: Squire, L. (ed.) Encyclopedia of Neuroscience. Elsevier, Oxford (2009)

    Google Scholar 

  14. Cohen, S., Greenberg, M.E.: Communication between the synapse and the nucleus in neuronal development, plasticity, and disease. Annu. Rev. Cell Dev. Biol. 24, 183–209 (2008)

    Article  Google Scholar 

  15. Sweatt, J.D.: Experience-dependent epigenetic modifications in the central nervous system. Biol. Psychiatry 65, 191–197 (2009)

    Article  Google Scholar 

  16. Urdinguio, R.G., Sanchez-Mut, J.V., Esteller, M.: Epigenetic mechanisms in neurological diseases: genes, syndromes, and therapies. Lancet Neurol. 8, 1056–1072 (2009)

    Article  Google Scholar 

  17. Dundr, M., Ospina, J.K., Sung, M.H., John, S., Upender, M., Ried, T., Hager, G.L., Matera, A.G.: Actin-dependent intranuclear repositioning of an active gene locus in vivo. J. Cell Biol. 179, 1095–1103 (2007)

    Article  Google Scholar 

  18. Monneron, A., Bernhard, W.: Fine structural organization of the interphase nucleus in some mammalian cells. J. Ultrastruct. Res. 27, 266–288 (1969)

    Article  Google Scholar 

  19. Cremer, T., Cremer, M.: Chromosome territories. Cold Spring Harb. Perspect. Biol. 2, a003889 (2010)

    Article  Google Scholar 

  20. Brown, J.M., Green, J., das Neves, R.P., Wallace, H.A., Smith, A.J., Hughes, J., Gray, N., Taylor, S., Wood, W.G., Higgs, D.R., Iborra, F.J., Buckle, V.J.: Association between active genes occurs at nuclear speckles and is modulated by chromatin environment. J. Cell Biol. 182, 1083–1097 (2008)

    Google Scholar 

  21. Andrulis, E.D., Neiman, A.M., Zappulla, D.C., Sternglanz, R.: Perinuclear localization of chromatin facilitates transcriptional silencing. Nature 394, 592–595 (1998)

    Article  Google Scholar 

  22. Villagra, N.T., Bengoechea, R., Vaque, J.P., Llorca, J., Berciano, M.T., Lafarga, M.: Nuclear compartmentalization and dynamics of the poly(A)-binding protein nuclear 1 (PABPN1) inclusions in supraoptic neurons under physiological and osmotic stress conditions. Mol. Cell. Neurosci. 37, 622–633 (2008)

    Article  Google Scholar 

  23. Michaluk, P., Wawrzyniak, M., Alot, P., Szczot, M., Wyrembek, P., Mercik, K., Medvedev, N., Wilczek, E., De Roo, M., Zuschratter, W., Muller, D., Wilczynski, G.M., Mozrzymas, J.W., Stewart, M.G., Kaczmarek, L., Wlodarczyk, J.: Influence of matrix metalloproteinase MMP-9 on dendritic spine morphology. J. Cell Sci. 124, 3369–3380 (2011)

    Article  Google Scholar 

  24. Walczak, A., Szczepankiewicz, A.A., Ruszczycki, B., Magalska, A., Zamlynska, K., Dzwonek, J., Wilczek, E., Zybura-Broda, K., Rylski, M., Malinowska, M., Dabrowski, M., Szczepinska, T., Pawlowski, K., Pyskaty, M., Wlodarczyk, J., Szczerbal, I., Switonski, M., Cremer, M., Wilczynski, G.M.: Novel higher-order epigenetic regulation of the BDNF gene upon seizures. J. Neurosci. 33, 2507–2511 (2013)

    Article  Google Scholar 

  25. Yuste, R., Denk, W.: Dendritic spines as basic functional units of neuronal integration. Nature 375:682–684 (1995)

    Article  Google Scholar 

  26. Segal, M.: Release of calcium form stores alters the morphology of dendritic spines in cultured hippocampal neurons. Prog. Brain Res. 138, 53–59 (2002)

    Article  Google Scholar 

  27. Segal, M.: Dendritic spines, synaptic plasticity and neuronal survival activity shapes dendritic spines to enhance neuronal viability. Eur. J. Neurosci. 31, 2178–2184 (2010)

    Article  Google Scholar 

  28. Yuste, R., Bonhoeffer, T.: Morphological changes in dendritic spines associated with long-term synaptic plasticity. Annu. Rev. Neurosci. 24, 1071–1089 (2001)

    Article  Google Scholar 

  29. Yasumatsu, N., Matsuzaki, M., Miyazaki, T., Noguchi, J., Kasai, H.: Principles of long-term dynamics of dendritic spines. J. Neurosci. 28, 13592–13608 (2008)

    Article  Google Scholar 

  30. Matsuzaki, M., Honkura, N., Ellis-Davies, G.C.R., Kasai, H.: Structural basis of long-term potentiation in single dendritic spines. Nature 429, 761–766 (2004)

    Article  Google Scholar 

  31. Holtmaat, A.J., Trachtenberg, J.T., Wilbrecht, L., Shepherd, G.M., Zhang, X., Knott, G.W., Svoboda, K.: Transient and persistent dendritic spines in the neurocortex in vivo. Neuron 45, 279–291 (2005)

    Article  Google Scholar 

  32. Ziv, N., Smith, S.: Evidence for a role of dendritic filopodia in synaptogenesis and spine formation. Neuron 17, 91–102 (1996)

    Article  Google Scholar 

  33. Korkotian, E., Segal, M.: Release of calcium form stores alters the morphology of dendritic spines in cultured hippocampal neurons. Proc. Natl. Acad. Sci. USA 96, 12068–12072 (1999)

    Article  Google Scholar 

  34. Sala, C., Piëch, V., Wilson, N.R., Passafaro, M., Liu, G., Sheng, M.: Regulation of dendritic spine morphology and synaptic function by Shank and Homer. Neuron 31, 115–130 (2001)

    Article  Google Scholar 

  35. Kasai, H., Fukuda, M., Watanabe, S., Hayashi-Takagi, A., Noguch, J.: Structural dynamics of dendritic spines in memory and cognition. Trends Neurosci. 33, 121–129 (2003)

    Article  Google Scholar 

  36. Hung, A.Y., Futai, K., Sala, C., Valtschanoff, J.G., Ryu, J., Woodworth, M.A., Kidd, F.L., Sung, C.C., Miyakawa, T., Bearand, M.F., Weinberg, R.J., Sheng, M.: Smaller dendritic spines, weaker synaptic transmission, but enhanced spatial learning in mice lacking Shank. J. Neurosci. 38, 1697–1708 (2008)

    Article  Google Scholar 

  37. Oray, S., Majewska, A., Sur, M.: Effects of synaptic activity on dendritic spine motility of developing cortical layer V pyramidal neurons. Cereb. Cortex 16, 730–741 (2006)

    Article  Google Scholar 

  38. Hosokawa, T., Rusakov, D., Bliss, T., Fine, A.: Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP. J. Neurosci. 15(8), 5560–6673 (1995)

    Google Scholar 

  39. Korkotian, E., Segal, M.: Regulation of dendritic spine motility in cultured hippocampal neurons. J. Neurosci. 21, 6115–6124 (2001)

    Google Scholar 

  40. Hering, H., Sheng, M.: Dendritic spines: structure, dynamics and regulation. Nat. Rev. Neurosci. 12, 880–886 (2001).

    Article  Google Scholar 

  41. Fiala, J.C., Feinberg, M., Popov, V., Harris, K.M.: Synaptogenesis via dendritic filopodia in developing hippocampal area CA1. J. Neurosci. 18, 8900–8911 (1998)

    Google Scholar 

  42. Sorra, K., Harris, K.: Overview on the structure, composition, function, development, and plasticity of hippocampal dendritic spines. Hippocampus 10, 501–511 (2000)

    Article  Google Scholar 

  43. Grutzendler, J., Kasthuri, N.: WBGan: long-term dendritic spine stability in the adult cortex. Nature 420, 812–816 (2002)

    Article  Google Scholar 

  44. Dailey, M.E., Smith, S.J.: The dynamics of dendritic structure in developing hippocampal slices. J. Neurosci. 16, 2983–2994 (1996)

    Google Scholar 

  45. Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N., Nakahara, H.: Structure-stability-function relationship of dendritic spines. Trends Neurosci. 26, 360–368 (2003)

    Article  Google Scholar 

  46. Izeddin, I., Specht, C.G., Lelek, M., Darzacq, X., Triller, A., Zimmer. C., Dahan, M.: Super-resolution dynamic imaging of dendritic spines using a low-affinity photoconvertible actin probe. PLoS One 6(1), e15611 (2011)

    Google Scholar 

  47. Nägerl, U.V., Willig, K.I., Hein, B., Hell, S.W., Bonhoeffer. T.: Live-cell imaging of dendritic spines by STED microscopy. Proc. Natl. Acad. Sci. USA 105, 18982–18987 (2008)

    Article  Google Scholar 

  48. Rodriguez, A., Ehlenberger, D., Dickstein, D., Hof, P., Wearne, S.: Automated three-dimensional detection and shape classification of dendritic spines from fluorescence microscopy images. PLoS One 3(4), e1997 (2008)

    Article  Google Scholar 

  49. Ruszczycki, B., Szepesi, Z., Wilczynski, G.M., Bijata, M., Kalita, K., Kaczmarek, L., Wlodarczyk, J.: Sampling issues in quantitative analysis of dendritic spines morphology. BMC Bioinformatics 13, 213 (2012)

    Article  Google Scholar 

  50. Son, I., Song, S., Lee, S., Chang, S., Kim, M.: Morphological change tracking of dendritic spines based on structural features. J. Microsc. 241, 261–272 (2011)

    Article  Google Scholar 

  51. Koh, I., Lindquist, W.B., Zito, K., Nimchinsky, E.A., Svoboda, K.: An image analysis algorithm for dendritic spines. Neural Comput. 14, 1283–1310 (2002)

    Article  MATH  Google Scholar 

  52. Ceyhan, E.: Modeling metric distances of dendrite spines of mice based on morphometric measures. In: The Proceeding of International Symposium on Health Informatics and Bioinformatics (2007)

    Google Scholar 

Download references

Acknowledgements

The authors thank Ania Wilczyñska for help in preparing Fig. 1, and Marcelina Hajnrych for analysis of images. This work was supported by the National Science Centre Dec-2011/01/D/NZ3/00163, 7873/B/P01/2011/40, and the European Regional Development Fund POIG 01.01.02-00-008/08.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Błażej Ruszczycki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ruszczycki, B., Bijata, M., Walczak, A., Wilczyński, G., Włodarczyk, J. (2014). Contemporary Problems in Quantitative Image Analysis in Structural Neuronal Plasticity. In: Saha, P., Maulik, U., Basu, S. (eds) Advanced Computational Approaches to Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41539-5_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41539-5_7

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41538-8

  • Online ISBN: 978-3-642-41539-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics