Skip to main content

A Meta-learning Approach for Protein Function Prediction

  • Chapter
  • First Online:
Advanced Computational Approaches to Biomedical Engineering
  • 1549 Accesses

Abstract

One of the major challenges in the post-genomic era is to accurately model the interactions taking place in most cellular processes. Detailed characterization of such interactions is critical for understanding the principles of living cell molecular machinery on the system biology level. This book chapter contains a review of the multiscale protein biological function prediction algorithms that are founded on protein sequence analysis, three-dimensional structure comparison, biological function annotation, and finally molecular interactions. We include diverse computational methods used to predict the biological function for a given biomolecule using multiscale features, and more generally to model a meta-learning prediction system to analyze the impact of micro-dynamics on global behavior for selected biological systems, with important roles in chemistry, biology, and medicine.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Watson, J.D.: The human genome project: past, present, and future. Science 248, 44–49 (1990)

    Article  Google Scholar 

  2. Adams, M.D., Kelley, J.M., Gocayne, J.D., Dubnick, M., Polymeropoulos, M.H., Xiao, H., Merril, C.R., Wu, A., Olde, B., Moreno, R.F.: Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252, 1651–1656 (1991)

    Article  Google Scholar 

  3. Moult, J., Fidelis, K., Kryshtafovych, A., Tramontano, A.: Critical assessment of methods of protein structure prediction (CASP)—round IX. Proteins 79, 1–5 (2011)

    Article  Google Scholar 

  4. Basu, S., Plewczynski, D.: AMS 3.0: prediction of post-translational modifications. BMC Bioinformatics 11, 210 (2010)

    Article  Google Scholar 

  5. Plewczynski, D., Basu, S., Saha, I.: AMS 4.0: consensus prediction of post-translational modifications in protein sequences. Amino Acids 43(2), 573–582 (2012)

    Article  Google Scholar 

  6. Plewczynski, D.: Mean-field theory of meta-learning. J. Stat. Mech. 11, P11003 (2009)

    Article  Google Scholar 

  7. Plewczynski, D.: Landau theory of meta-learning. In: Security and Intelligent Information Systems, vol. 7053, pp. 142–153. Springer, Heidelberg (2012)

    Google Scholar 

  8. Saha, I., Maulik, U., Bandyopadhyay, S., Plewczynski, D.: Fuzzy clustering of physicochemical and biochemical properties of amino acids. Amino Acids 43, 583–594 (2012)

    Article  Google Scholar 

  9. von Grotthuss, M., Plewczynski, D., Ginalski, K., Rychlewski, L., Shakhnovich, E.: PDB-UF: database of predicted enzymatic functions for unannotated protein structures from structural genomics. BMC Bioinformatics 7, 53 (2006)

    Article  Google Scholar 

  10. von Grotthuss, M., Plewczynski, D., Vriend, G., Rychlewski, L.: 3D-Fun: predicting enzyme function from structure. Nucleic Acids Res. 36, W303–W307 (2008)

    Article  Google Scholar 

  11. Plewczyński, D., Paś, J., von Grotthuss, M., Rychlewski, L.: 3D-Hit: fast structural comparison of proteins. Appl. Bioinformatics 1, 223 (2002)

    Google Scholar 

  12. Plewczynski, D., Rychlewski, L.: Meta-basic estimates the size of druggable human genome. J. Mol. Model. 15, 695–699 (2009)

    Article  Google Scholar 

  13. Chatterjee, P., Basu, S., Kundu, M., Nasipuri, M., Plewczynski, D.: PSP_MCSVM: brainstorming consensus prediction of protein secondary structures using two-stage multiclass support vector machines. J. Mol. Model. 17, 2191–2201 (2011)

    Article  Google Scholar 

  14. Kawashima, S., Kanehisa, M.: AAindex: amino acid index database. Nucleic Acids Res. 28(374) (2000)

    Google Scholar 

  15. Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lipman, D.J.: Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

    Article  Google Scholar 

  16. Frishman, D., Argos, P.: Seventy-five percent accuracy in protein secondary structure prediction. Proteins 27, 329–335 (1997)

    Article  Google Scholar 

  17. King, R.D., Sternberg, M.J.E.: Identification and application of the concepts important for accurate and reliable protein secondary structure prediction. Protein Sci. 5, 2298–2310 (1996)

    Article  Google Scholar 

  18. Levin, J.M.: Exploring the limits of nearest neighbour secondary structure prediction. Protein Eng. 10, 771–776 (1997)

    Article  Google Scholar 

  19. Plewczynski, D., Tkacz, A., Wyrwicz, L.S., Rychlewski, L.: AutoMotif server: prediction of single residue post-translational modifications in proteins. Bioinformatics 21, 2525–2527 (2005)

    Article  Google Scholar 

  20. Plewczynski, D., Tkacz, A., Wyrwicz, L.S., Rychlewski, L., Ginalski, K.: AutoMotif Server for prediction of phosphorylation sites in proteins using support vector machine: 2007 update. J. Mol. Model. 14, 69–76 (2008)

    Article  Google Scholar 

  21. Plewczynski, D., Rychlewski, L., Ye, Y., Jaroszewski, L., Godzik, A.: Integrated web service for improving alignment quality based on segments comparison. BMC Bioinformatics 5, 98 (2004)

    Article  Google Scholar 

  22. Chatterjee, P., Basu, S., Kundu, M.M., Nasipuri, M., Plewczynski, D.: PPI_SVM: prediction of protein-protein interactions using machine learning, do-main-domain affinities and frequency tables. Cell. Mol. Biol. Lett. 16, 264–278 (2011)

    Article  Google Scholar 

  23. Xenarios, I., Salwinski, L., Duan, X.J., Higney, P., Kim, S.-M., Eisenberg, D.: DIP, the database of interacting proteins: a research tool for studying cellular networks of protein interactions. Nucleic Acids Res. 30, 303–305 (2002)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dariusz Plewczynski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Plewczynski, D., Basu, S. (2014). A Meta-learning Approach for Protein Function Prediction. In: Saha, P., Maulik, U., Basu, S. (eds) Advanced Computational Approaches to Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41539-5_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41539-5_5

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41538-8

  • Online ISBN: 978-3-642-41539-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics