Skip to main content

Secure End-to-End Communication with Optimal Throughput and Resilience against Malicious Adversary

  • Conference paper
Distributed Computing (DISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8205))

Included in the following conference series:

  • 1599 Accesses

Abstract

We demonstrate the feasibility of end-to-end communication in highly unreliable networks. Modeling a network as a graph with vertices representing nodes and edges representing the links between them, we consider two forms of unreliability: unpredictable edge-failures, and deliberate deviation from protocol specifications by corrupt and maliciously controlled nodes.

We present a routing protocol for end-to-end communication that is simultaneously resilient to both forms of unreliability. In particular, we prove that our protocol is secure against arbitrary actions of the corrupt nodes controlled by a polynomial-time adversary, achieves correctness (Receiver gets all of the messages from Sender, in-order and without modification), and enjoys provably optimal throughput performance, as measured using competitive analysis. Competitive analysis is utilized to provide protocol guarantees again malicious behavior without placing limits on the number of the corrupted nodes in the network.

Furthermore, our protocol does not incur any asymptotic memory overhead as compared to other protocols that are unable to handle malicious interference of corrupt nodes. In particular, our protocol requires O(n 2) memory per processor, where n is the size of the network. This represents an O(n 2) improvement over all existing protocols that have been designed for this network model.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Afek, Y., Awerbuch, B., Gafni, E., Mansour, Y., Rosen, A., Shavit, N.: Slide– The Key to Poly. End-to-End Communication. J. of Algorithms 22, 158–186 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  2. Afek, Y., Gafni, E., Rosén, A.: The Slide Mechanism with Applications in Dynamic Networks. In: PODC, pp. 35–46 (1992)

    Google Scholar 

  3. Aiello, W., Kushilevitz, E., Ostrovsky, R., Rosén, A.: Adaptive Packet Routing For Bursty Adversarial Traffic. J. Comput. Syst. Sci. 60(3), 482–509 (2000)

    Article  MATH  Google Scholar 

  4. Aiello, W., Ostrovsky, R., Kushilevitz, E., Rosén, A.: Dynamic Routing on Networks with Fixed-Size Buffers. In: SODA, pp. 771–780 (2003)

    Google Scholar 

  5. Ajtai, M., Aspnes, J., Dwork, C., Waarts, O.: A Theory of Competitive Analysis for Distributed Algorithms. In: FOCS, pp. 32–40 (1994)

    Google Scholar 

  6. Amir, Y., Bunn, P., Ostrovsky, R.: Authenticated Adversarial Routing. In: Reingold, O. (ed.) TCC 2009. LNCS, vol. 5444, pp. 163–182. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  7. Andrews, M., Awerbuch, B., Fernández, A., Kleinberg, J., Leighton, T., Liu, Z.: Universal Stability Results for Greedy Contention-Resolution Protocols. In: FOCS, pp. 380–389 (1996)

    Google Scholar 

  8. Awerbuch, B., Azar, Y., Plotkin, S.: Throughput-Competitive On-Line Routing. In: FOCS, pp. 401–411 (1993)

    Google Scholar 

  9. Awerbuch, B., Holmer, D., Nina-Rotaru, C., Rubens, H.: An On-Demand Secure Routing Protocol Resilient to Byzantine Failures. In: Workshop on Wireless Security, pp. 21–30 (2002)

    Google Scholar 

  10. Awerbuch, B., Leighton, T.: Improved Approximation Algorithms for the Multi-Commodity Flow Problem and Local Competitive Routing in Dynamic Networks. In: STOC, pp. 487–496 (1994)

    Google Scholar 

  11. Awerbuch, B., Mansour, Y., Shavit, N.: End-to-End Communication With Polynomial Overhead. In: FOCS, pp. 358–363 (1989)

    Google Scholar 

  12. Barak, B., Goldberg, S., Xiao, D.: Protocols and Lower Bounds for Failure Localization in the Internet. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 341–360. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  13. Boneh, D., Goh, E.-J., Nissim, K.: Evaluating 2-DNF Formulas on Ciphertexts. In: Kilian, J. (ed.) TCC 2005. LNCS, vol. 3378, pp. 325–341. Springer, Heidelberg (2005)

    Chapter  Google Scholar 

  14. Borodin, A., El-Yaniv, R.: Online Computation and Competitive Analysis. Camb. Univ. Press (1998)

    Google Scholar 

  15. Borodin, A., Kleinberg, J., Raghavan, P., Sudan, M., Williamson, D.: Adversarial Queuing Theory. In: STOC, pp. 376–385 (1996)

    Google Scholar 

  16. Broder, A., Frieze, A., Upfal, E.: A General Approach to Dynamic Packet Routing with Bounded Buffers. In: FOCS, pp. 390–399 (1996)

    Google Scholar 

  17. Bunn, P., Ostrovsky, R.: Asynchronous Throughput-Optimal Routing in Malicious Networks. In: Abramsky, S., Gavoille, C., Kirchner, C., Meyer auf der Heide, F., Spirakis, P.G. (eds.) ICALP 2010. LNCS, vol. 6199, pp. 236–248. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  18. Bunn, P., Ostrovsky, R.: Secure End-to-End Communication with Optimal Throughput in Unreliable Networks. Cornell Univ. Library arXiv, Article No. 1304.2454 (2013), http://arxiv.org/abs/1304.2454

  19. ElGamal, T.: A Public Key Cryptosystem and a Signature Scheme Based on Discrete Logarithms. IEEE Transactions on Info. Theory 31, 469–472 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  20. Goldberg, S., Xiao, D., Tromer, E., Barak, B., Rexford, J.: Path-Quality Monitoring in the Presence of Adversaries. SIGMETRICS 36, 193–204 (2008)

    Article  Google Scholar 

  21. Goldwasser, S., Micali, S.: Probabilistic encryption. J. of Computer and System Sciences 28, 270–299 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kushilevitz, E., Ostrovsky, R., Rosén, A.: Log-Space Polynomial End-to-End Communication. SIAM Journal of Computing 27(6), 1531–1549 (1998)

    Article  MATH  Google Scholar 

  23. Leighton, T., Makedon, F., Plotkin, S., Stein, C., Tardos, É., Tragoudas, S.: Fast Approximation Algorithms for Multicommodity Flow Problem. In: STOC (1991)

    Google Scholar 

  24. Okamoto, T., Uchiyama, S.: A New Public-Key Cryptosystem as Secure as Factoring. In: Nyberg, K. (ed.) EUROCRYPT 1998. LNCS, vol. 1403, pp. 308–318. Springer, Heidelberg (1998)

    Chapter  Google Scholar 

  25. Plotkin, S.: Competitive Routing of Virtual Circuits in ATM Networks. IEEE J. on Selected Areas in Communications 13(6), 1128–1136 (1995)

    Article  MathSciNet  Google Scholar 

  26. Sleator, D., Tarjan, R.: Amortized Efficiency of List Update and Paging Rules. Commun. ACM 28(2), 202–208 (1985)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Bunn, P., Ostrovsky, R. (2013). Secure End-to-End Communication with Optimal Throughput and Resilience against Malicious Adversary. In: Afek, Y. (eds) Distributed Computing. DISC 2013. Lecture Notes in Computer Science, vol 8205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41527-2_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41527-2_28

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41526-5

  • Online ISBN: 978-3-642-41527-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics