Skip to main content

Frequency Hopping against a Powerful Adversary

  • Conference paper
Distributed Computing (DISC 2013)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 8205))

Included in the following conference series:

Abstract

Frequency hopping is a central method in wireless communication, offering improved resistance to adversarial interference and interception attempts, and easy non-coordinated control in dynamic environments. In this paper, we introduce a new model that supports a rigorous study of frequency hopping in adversarial settings. We then propose new frequency hopping protocols that allow a sender-receiver pair to essentially use the full communication capacity, despite a powerful adversary that can scan and jam a significant amount of the ongoing transmissions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alon, N., Bruck, J., Naor, J., Naor, M., Roth, R.M.: Construction of asymptotically good low-rate error-correcting codes through pseudo-random graphs. IEEE Transactions on Information Theory 38, 509–516 (1992)

    Article  MATH  Google Scholar 

  2. Anantharamu, L., Chlebus, B.S., Kowalski, D.R., Rokicki, M.A.: Medium access control for adversarial channels with jamming. In: Kosowski, A., Yamashita, M. (eds.) SIROCCO 2011. LNCS, vol. 6796, pp. 89–100. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  3. Awerbuch, B., Richa, A., Scheideler, C.: A Jamming-Resistant MAC Protocol for Single-Hop Wireless Networks. In: Proc. 27th Symposium on Principles of Distributed Computing, PODC (2008)

    Google Scholar 

  4. Azar, Y., Gurel-Gurevich, O., Lubetzky, E., Moscibroda, T.: Optimal discovery strategies in white space networks. In: Demetrescu, C., Halldórsson, M.M. (eds.) ESA 2011. LNCS, vol. 6942, pp. 713–722. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  5. Chu, W., Colbourn, C.: Optimal frequency-hopping sequences via cyclotomy. IEEE Transactions on Information Theory 51(3), 1139–1141 (2005)

    Article  MathSciNet  Google Scholar 

  6. Demmel, J.W.: Applied numerical linear algebra. Society for Industrial and Applied Mathematics, Philadelphia (1997)

    Book  MATH  Google Scholar 

  7. Diaconis, P., Stroock, D.: Geometric Bounds for Eigenvalues of Markov Chains. The Annals of Applied Probability 1(1), 36–61 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  8. Dolev, S., Gilbert, S., Guerraoui, R., Kuhn, F., Newport, C.: The wireless synchronization problem. In: Proceedings of the 28th ACM Symposium on Principles of Distributed Computing, PODC, New York, NY, USA, pp. 190–199 (2009)

    Google Scholar 

  9. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Gossiping in a Multi-Channel Radio Network (An Oblivious Approach to Coping With Malicious Interference). In: Pelc, A. (ed.) DISC 2007. LNCS, vol. 4731, pp. 208–222. Springer, Heidelberg (2007)

    Chapter  Google Scholar 

  10. Dolev, S., Gilbert, S., Guerraoui, R., Newport, C.: Secure Communication over Radio Channels. In: Proc. 27th ACM Symposium on Principles of Distributed Computing (PODC), pp. 105–114 (2008)

    Google Scholar 

  11. Dolev, S., Gilbert, S., Khabbazian, M., Newport, C.: Leveraging channel diversity to gain efficiency and robustness for wireless broadcast. In: Peleg, D. (ed.) DISC 2011. LNCS, vol. 6950, pp. 252–267. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  12. Flum, J., Grohe, M.: Parameterized Complexity Theory, vol. 7. Springer (2006)

    Google Scholar 

  13. Gilbert, S., Guerraoui, R., Newport, C.: Of Malicious Motes and Suspicious Sensors. In: Proc. 10th Conference on Principles of Distributed Systems, OPODIS (2006)

    Google Scholar 

  14. Impagliazzo, R., Zuckerman, D.: How to recycle random bits. In: Proceedings of the 30th Annual Symposium on Foundations of Computer Science, Washington, DC, USA, pp. 248–253 (1989)

    Google Scholar 

  15. Knopp, R., Humblet, P.: On coding for block fading channels. IEEE Transactions on Information Theory 46(1), 189–205 (2000)

    Article  MATH  Google Scholar 

  16. Koo, C.Y., Bhandari, V., Katz, J., Vaidya, N.H.: Reliable Broadcast in Radio Networks: the Bounded Collision Case. In: Proc. 25th ACM Symposium on Principles of Distributed Computing, PODC (2006)

    Google Scholar 

  17. Köppel, S.: Bluetooth jamming. Bachelor’s Thesis supervised by Michael König and Roger Wattenhofer, ETH Zurich (2013)

    Google Scholar 

  18. Lubotzky, A., Phillips, R., Sarnak, P.: Ramanujan graphs. Combinatorica 8, 261–277 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  19. Mansour, I., Chalhoub, G., Quilliot, A.: Security architecture for wireless sensor networks using frequency hopping and public key management. In: ICNSC, pp. 526–531. IEEE (2011)

    Google Scholar 

  20. Margulis, G.A.: Explicit group-theoretic constructions of combinatorial schemes and their applications in the construction of expanders and concentrators. Problemy Peredachi Informatsii 24(1), 51–60 (1988)

    MathSciNet  Google Scholar 

  21. Markey, H.K., Antheil, G.: Secret communication system, U.S. Patent 2292387 (1942)

    Google Scholar 

  22. Medard, M., Gallager, R.: Bandwidth scaling for fading multipath channels. IEEE Transactions on Information Theory 48(4), 840–852 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  23. Meier, D., Pignolet, Y.A., Schmid, S., Wattenhofer, R.: Speed Dating despite Jammers. In: 5th IEEE International Conference on Distributed Computing in Sensor Systems (DCOSS), Marina del Rey, California, USA (June 2009)

    Google Scholar 

  24. Mitola, J., Maguire, G.Q.: Cognitive radio: making software radios more personal. IEEE Personal Communications 6(4), 13–18 (1999)

    Article  Google Scholar 

  25. Morgenstern, M.: Existence and Explicit Constructions of q + 1 Regular Ramanujan Graphs for Every Prime Power q. Journal of Combinatorial Theory, Series B 62(1), 44–62 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  26. Nilli, A.: On the second eigenvalue of a graph. Discrete Math. 91, 207–210 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  27. Project Ubertooth, http://ubertooth.sourceforge.net/

  28. Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Competitive and fair medium access despite reactive jamming. In: 2011 31st International Conference on Distributed Computing Systems (ICDCS), pp. 507–516 (June 2011)

    Google Scholar 

  29. Richa, A., Scheideler, C., Schmid, S., Zhang, J.: A jamming-resistant MAC protocol for multi-hop wireless networks. In: Lynch, N.A., Shvartsman, A.A. (eds.) DISC 2010. LNCS, vol. 6343, pp. 179–193. Springer, Heidelberg (2010)

    Chapter  Google Scholar 

  30. Richa, A., Scheideler, C., Schmid, S., Zhang, J.: Self-stabilizing leader election for single-hop wireless networks despite jamming. In: Proceedings of the Twelfth ACM International Symposium on Mobile Ad Hoc Networking and Computing. MobiHoc, New York, NY, USA (2011)

    Google Scholar 

  31. Tesla, N.: Method of signaling, U.S. Patent 723188 (1903)

    Google Scholar 

  32. Tesla, N.: System of signaling, U.S. Patent 725605 (1903)

    Google Scholar 

  33. Zenneck, J.: Leitfaden der drahtlosen Telegraphie. Enke, Stuttgart, Germany (1909)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Emek, Y., Wattenhofer, R. (2013). Frequency Hopping against a Powerful Adversary. In: Afek, Y. (eds) Distributed Computing. DISC 2013. Lecture Notes in Computer Science, vol 8205. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41527-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41527-2_23

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41526-5

  • Online ISBN: 978-3-642-41527-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics