Advertisement

Error Estimation in Energy Norms: Is It Necessary to Fit the Mesh to Boundary Layers

  • Hans-G. Roos
  • Martin Schopf
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8236)

Abstract

We demonstrate for two typical model problems that one observes uniform convergence of the Galerkin FEM on standard meshes with respect to the perturbation parameter in energy norms if the energy norm of the layers is small. Moreover, it is also possible only to resolve the strong layer using a layer adapted mesh but to do nothing concerning the weaker layer.

Keywords

boundary layer energy norm Galerkin FEM 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Apel, T., Lube, G.: Anisotropic mesh refinement for a singularly perturbed reaction diffusion model problem. Appl. Numer. Math. 26(4), 415–433 (1998), doi:10.1016/S0168-9274(97)00106-2MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Kellogg, R.B., Stynes, M.: Sharpened bounds for corner singularities and boundary layers in a simple convection-diffusion problem. App. Math. Lett. 20(5), 539–544 (2007), doi:10.1016/j.aml.2006.08.001MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Li, J., Navon, I.M.: Uniformly convergent finite element methods for singularly perturbed elliptic boundary value problems I: Reaction-diffusion Type. Comput. Math. Appl. 35(3), 57–70 (1998), doi:10.1016/S0898-1221(97)00279-4MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Li, J.: Convergence and superconvergence analysis of finite element methods on highly nonuniform anisotropic meshes for singularly perturbed reaction-diffusion problems. Appl. Numer. Math. 36(2-3), 129–154 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Lin, R.: Discontinuous Discretization for Least-Squares Formulation of Singularly Perturbed Reaction-Diffusion Problems in One and Two Dimensions. SIAM J. Numer. Anal. 47, 89–108 (2008), doi:10.1137/070700267MathSciNetCrossRefGoogle Scholar
  6. 6.
    Lin, R., Stynes, M.: A balanced finite element method for singularly perturbed reaction-diffusion problems. SIAM J. Numer. Anal. 50(5), 2729–2743 (2012), doi:10.1137/110837784MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Naughton, A., Kellogg, R.B., Stynes, M.: Regularity and derivative bounds for a convection-diffusion problem with a Neumann outflow condition. J. Differential Equations 247(9), 2495–2516 (2009), doi:10.1016/j.jde.2009.07.030MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Roos, H.-G., Stynes, M., Tobiska, L.: Robust numerical methods for singularly perturbed differential equations. Springer (2008)Google Scholar
  9. 9.
    Roos, H.-G., Schopf, M.: Convergence and stability in balanced norms of finite element methods on Shishkin meshes for reaction-diffusion problems (submitted)Google Scholar
  10. 10.
    Schatz, A.H., Wahlbin, L.B.: On the finite element method for singularly perturbed reaction-diffusion problems in two and one dimensions. Math. Comp. 40(161), 47–89 (1983)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Schieweck, F.: Eine asymptotisch angepate Finite-Element-Methode für singulär gestörte elliptische Randwertaufgaben. PhD thesis, Technical University Magdeburg (1986)Google Scholar
  12. 12.
    Schieweck, F.: On the role of boundary conditions for CIP stabilization of higher order finite elements. Electron. Trans. Numer. Anal. 32, 1–16 (2008)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Zhu, G., Chen, S.: Convergence and superconvergence analysis of an anisotropic nonconforming finite element methods for singularly perturbed reaction-diffusion problems. J. Comput. Appl. Math. 234(10), 3048–3063 (2010), doi: 10.1016/j.cam, 04.021Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hans-G. Roos
    • 1
  • Martin Schopf
    • 1
  1. 1.University of Technology DresdenGermany

Personalised recommendations