A Multicomponent Alternating Direction Method for Numerical Solution of Boussinesq Paradigm Equation

  • Natalia Kolkovska
  • Krassimir Angelow
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8236)


We construct and analyze a multicomponent alternating direction method (a vector additive scheme) for the numerical solution of the multidimensional Boussinesq Paradigm Equation (BPE). In contrast to the standard splitting methods at every time level a system of many finite difference schemes is solved. Thus, a vector of the discrete solutions to these schemes is found. It is proved that these discrete solutions converge to the continuous solution in the uniform mesh norm with O(|h|2 + τ) order. The method provides full approximation to BPE and is efficient in implementation. The numerical rate of convergence and the altitudes of the crests of the traveling waves are evaluated.


Boussinesq Equation multicomponent ADI method vector additive scheme Sobolev type problem 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Abrashin, V.N.: A variant of alternating directions method for solving of multidimensional problems of mathematical physics. Part I. Differ. Eq. 26, 314–323 (1990)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Abrashin, V.N., Dzuba, I.: A variant of alternating directions method for solving of multidimensional problems of mathematical physics. Part II. Differ. Eq. 26, 1179–1191 (1990)Google Scholar
  3. 3.
    Abrashin, V.N., Vabishchevich, P.N.: Vector additive schemes for second order evolutionary problems. Differ. Eq. 34, 1666–1674 (1998)MathSciNetGoogle Scholar
  4. 4.
    Abrashin, V.N., Zhadaeva, N.G.: Economical additive finite difference schemes for multidimensional nonlinear non stationary problems. Differ. Eq. 38, 960–971 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Chertock, A., Christov, C.I., Kurganov, A.: Central-Upwind Schemes for the Boussinesq Paradigm Equation. In: Computational Science and High Performance Computing IV, NNFM, vol. 113, pp. 267–281 (2011)Google Scholar
  6. 6.
    Christov, C.I.: An Energy-consistent Dispersive Shallow-water Model. Wave Motion 34, 161–174 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Christov, C.I., Kolkovska, N., Vasileva, D.: On the Numerical Simulation of Unsteady Solutions for the 2D Boussinesq Paragigm Equation. In: Dimov, I., Dimova, S., Kolkovska, N. (eds.) NMA 2010. LNCS, vol. 6046, pp. 386–394. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  8. 8.
    Geiser, J.: Decomposition methods for differential equations. CRC (2009)Google Scholar
  9. 9.
    Holden, H., Karlsen, K., Lie, K., Risebro, N.: Splitting methods for partial differential equations with rough solutions. Analysis and Matlab programs. EMS (2010)Google Scholar
  10. 10.
    Kolkovska, N.: Two families of finite difference schemes for multidimensional Boussinesq paradigm equation. In: AIP CP, vol. 1301, pp. 395–403 (2010)Google Scholar
  11. 11.
    Dimova, M., Kolkovska, N.: Comparison of some finite difference schemes for Boussinesq paradigm equation. In: Adam, G., Buša, J., Hnatič, M. (eds.) MMCP 2011. LNCS, vol. 7125, pp. 215–220. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  12. 12.
    Kolkovska, N., Dimova, M.: A New Conservative Finite Different Scheme for Boussinesq Paradigm Equation. CEJM 10, 1159–1171 (2011)MathSciNetGoogle Scholar
  13. 13.
    Marchuk, G.I.: Splitting and alternating directions method. In: Handbook of Numerical Analysis, vol. 1. Elsevier (1990)Google Scholar
  14. 14.
    Samarskii, A.A.: The theory of difference schemes. In: Pure and Applied Mathematics, vol. 240. Marcel DekkerGoogle Scholar
  15. 15.
    Samarskii, A.A., Vabishchevich, P.N.: Additive schemes for problems of mathematical physics. Nauka, Moscow (1999)Google Scholar
  16. 16.
    Sveshnikov, A., Al’shin, A., Korpusov, M., Pletner, Y.: Linear and nonlinear equations of Sobolev type. Fizmatlit, Moscow (2007) (in Russian)Google Scholar
  17. 17.
    Vabishchevich, P.N.: Regularized Additive Operator-Difference Schemes. Comp. Math. Math. Phys. 50, 449–457 (2010)MathSciNetzbMATHGoogle Scholar
  18. 18.
    Vabishchevich, P.N.: On a new class of additive (splitting) operator-difference schemes. Math. Comp. 81, 267–276 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Vasileva, D., Dimova, M.: Comparison of two numerical approaches to Boussinesq paradigm equation. LNCS (submitted for publication in this volume)Google Scholar
  20. 20.
    Wang, Y., Mu, C., Deng, J.: Strong instability of solitary-wave solutions for a nonlinear Boussinesq equation. Nonlinear Analysis 69, 1599–1614 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Xu, R., Liu, Y.: Global existence and nonexistence of solution for Cauchy problem of multidimensional double dispersion equations. J. Math. Anal. Appl. 359, 739–751 (2009)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Natalia Kolkovska
    • 1
  • Krassimir Angelow
    • 1
  1. 1.Institute of Mathematics and InformaticsBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations