Finite Element Simulation of Nanoindentation Process

  • Roumen Iankov
  • Maria Datcheva
  • Sabina Cherneva
  • Dimiter Stoychev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8236)


Recently, nanoindentation technique is gaining importance in determination of the mechanical parameters of thin films and coatings. Most commonly, the instrumented indentation data are used to obtain two material characteristics of bulk materials: indentation modulus and indentation hardness. In this paper the authors discuss the possibility by means of numerical simulations of nanoindentation tests to obtained the force-displacement curve employing various constitutive models for both the substrate and the coating. Examples are given to demonstrate the influence of some features of the numerical model and the model assumptions on the quality of the simulation results. The main steps in creation of the numerical model and performing the numerical simulation of nanoindentation testing process are systematically studied and explained and the conclusions are drawn.


finite element method nanoindentation thin films 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bocciarelli, M., Bolzon, G.: Indentation and imprint mapping for the identification of interface properties in film-substrate systems. International Journal of Fracture 155, 1–17 (2009)CrossRefGoogle Scholar
  2. 2.
    Bolzon, G., Buljaka, V., Maier, G., Miller, B.: Assessment of elastic–plastic material parameters comparatively by three procedures based on indentation test and inverse analysis. Inverse Problems in Science and Engineering 19(6), 815–837 (2011)CrossRefzbMATHGoogle Scholar
  3. 3.
    Zhang, L., Yang, P., Shang, S., Li, C., Song, X.: Nanoindentation Experimental Approach and Numerical Simulation of AlCr Bilayer Films. Composite Interfaces 18(7), 615–626 (2011)CrossRefGoogle Scholar
  4. 4.
    Cherneva, S., Iankov, R., Stoychev, D.: Characterisation of mechanical properties of electrochemically deposited thin silver layers Transactions of the Institute of Metal Finishing 88(4), 209–214 (2010)Google Scholar
  5. 5.
    Pelletier, H., Krier, J., Mille, P.: Characterization of mechanical properties of thin films using nanoindentation test. Mechanics of Materials 38, 1182–1198 (2006)CrossRefGoogle Scholar
  6. 6.
    Cherneva, S., Iankov, R., Stoychev, D.: Determination of Mechanical Properties of Electrochemically Deposited Thin Gold Films. Journal of Theoretical and Applied Mechanics, Sofia 39(4), 65–72 (2009)Google Scholar
  7. 7.
    U9820A Agilent Nano Indenter G200,
  8. 8.
    Qin, J., Huang, Y., Xiao, J., Hwang, K.C.: The equivalence of axisymmetric indentation model for three-dimensional indentation hardness. Journal of Materials Research 24, 776–783 (2009)CrossRefGoogle Scholar
  9. 9.
    Lichinchi, M., Lenardi, C., Haupt, J., Vitali, R.: Simulation of Berkovich nanoindentation experiments on thin films using finite element method. Thin Solid Films 312(1-2), 240 (1998)CrossRefGoogle Scholar
  10. 10.
    Iankov, R., Cherneva, S., Datcheva, M., Stoychev, D.: Mechanical Characterization of Layers and Thin Films via Nanoindentation and Numerical Simulations, chapter in Series in Applied Mathematics and Mechanics. Mechanics of Nanomaterials and Nanotechnology, 261–286 (2012)Google Scholar
  11. 11.
    MSC Software Corporation, MSC.MARC Volume A: Theory and User Information (2005)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Roumen Iankov
    • 1
  • Maria Datcheva
    • 1
  • Sabina Cherneva
    • 1
  • Dimiter Stoychev
    • 2
  1. 1.Institute of MechanicsSofiaBulgaria
  2. 2.Institute of Physical ChemistrySofiaBulgaria

Personalised recommendations