Variance-Based Sensitivity Analysis of the Unified Danish Eulerian Model According to Variations of Chemical Rates

  • Ivan Dimov
  • Rayna Georgieva
  • Tzvetan Ostromsky
  • Zahari Zlatev
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8236)


A special computational technology for sensitivity analysis of ozone concentrations according to variations of rates of chemical reactions is developed. It allows us to study a larger number of reactions than we have considered in our previous study. The reactions are taken from the standardized scheme for air-pollution chemistry CBM-IV. A number of numerical experiments with a large-scale air pollution model (Unified Danish Eulerian Model, UNI-DEM) have been carried out to compute Sobol sensitivity measures. The sensitivity study has been done for the areas of four European cities (Genova, Milan, Manchester, and Edinburgh) with different geographical locations.


Ozone Concentration Sensitivity Index Global Sensitivity Analysis Chemical Rate Chemical Scheme 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Dimov, I., Georgieva, R.: Monte Carlo Adaptive Technique for Sensitivity Analysis of a Large-Scale Air Pollution Model. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2009. LNCS, vol. 5910, pp. 387–394. Springer, Heidelberg (2010)CrossRefGoogle Scholar
  2. 2.
    Dimov, I.T., Georgieva, R., Ivanovska, I., Ostromsky, T., Zlatev, Z.: Studying the Sensitivity of Pollutants’ Concentrations Caused by Variations of Chemical Rates. J. Comput. Appl. Math. 235, 391–402 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Dimov, I.T., Georgieva, R., Ostromsky, T.: Monte Carlo Sensitivity Analysis of an Eulerian Large-scale Air Pollution Model. Reliability Engineering & System Safety 107, 23–28 (2012), doi:10.1016/j.ress.2011.06.007.CrossRefGoogle Scholar
  4. 4.
    Ostromsky, T., Dimov, I.T., Georgieva, R., Zlatev, Z.: Air pollution modelling, sensitivity analysis and parallel implementation. International Journal of Environment and Pollution 46(1/2), 83–96 (2011)CrossRefGoogle Scholar
  5. 5.
    Ostromsky, T., Dimov, I., Georgieva, R., Zlatev, Z.: Parallel Computation of Sensitivity Analysis Data for the Danish Eulerian Model. In: Lirkov, I., Margenov, S., Waśniewski, J. (eds.) LSSC 2011. LNCS, vol. 7116, pp. 307–315. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  6. 6.
    Ostromsky, T., Dimov, I.T., Marinov, P., Georgieva, R., Zlatev, Z.: Advanced sensitivity analysis of the Danish Eulerian Model in parallel and grid environment. In: Proc. Third International Conference AMiTaNS 2011, AIP Conf. Proceedings, Albena Bulgaria, June 20-25, vol. 1404, pp. 225–232 (2011), AIP Conf. ProceedingsGoogle Scholar
  7. 7.
    Saltelli, S.: Making best use of model valuations to compute sensitivity indices. Computer Physics Communications 145, 280–297 (2002)CrossRefzbMATHGoogle Scholar
  8. 8.
    Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis. The Primer. John Wiley & Sons Ltd. (2008) ISBN: 978-0-470-05997-5Google Scholar
  9. 9.
    Sobol, I.M.: Sensitivity estimates for nonlinear mathematical models. Mathematical Modeling and Computational Experiment 1, 407–414 (1993)MathSciNetzbMATHGoogle Scholar
  10. 10.
    Sobol, I.M.: Global sensitivity indices for nonlinear mathematical models and their Monte Carlo estimates. Mathematics and Computers in Simulation 55(1-3), 271–280 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Sobol, I.M., Tarantola, S., Gatelli, D., Kucherenko, S., Mauntz, W.: Estimating the approximation error when fixing unessential factors in global sensitivity analysis. Reliability Engineering and System Safety 92, 957–960 (2007)CrossRefGoogle Scholar
  12. 12.
    Sobol, I., Myshetskaya, E.: Monte Carlo Estimators for Small Sensitivity Indices. Monte Carlo Methods and Applications 13(5-6), 455–465 (2007)MathSciNetzbMATHGoogle Scholar
  13. 13.
    Zlatev, Z.: Computer Treatment of Large Air Pollution Models. KLUWER Academic Publishers, Dorsrecht (1995)CrossRefGoogle Scholar
  14. 14.
    Zlatev, Z., Dimov, I.: Computational and Numerical Challenges in Environmental Modelling. Elsevier, Amsterdam (2006)Google Scholar
  15. 15.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Ivan Dimov
    • 1
  • Rayna Georgieva
    • 1
  • Tzvetan Ostromsky
    • 1
  • Zahari Zlatev
    • 2
  1. 1.Institute of Information and Communication TechnologiesBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Department of Environmental Science - Atmospheric EnvironmentAarhus UniversityRoskildeDenmark

Personalised recommendations