A Finite Difference Approach for the Time-Fractional Diffusion Equation with Concentrated Capacity

  • Aleksandra Delić
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8236)


In this paper we consider finite-difference scheme for the time-fractional diffusion equation with Caputo fractional derivative of order α ∈ (0,1) with the coefficient at the time derivative containing Dirac delta distribution.


Fractional derivative Boundary value problem Dirac distribution Finite difference method 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Alikhanov, A.A.: Boundary value problems for the diffusion equation of the variable order in the differential and difference settings. arXiv:1105.2033v1 [Math. N.A.] (May 10, 2011)Google Scholar
  2. 2.
    Alikhanov, A.A.: A priori estimates for solutions of boundary value problems for fractional-order equations. Differ. Equ. 46(5), 660–666 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Jovanović, B.S., Vulkov, L.G.: On the convergence of finite difference schemes for the heat equation with concentrated capacity. Numer. Math. 89(4), 715–734 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Jovanović, B.S., Vulkov, L.G.: Operator’s approach to the problems with concentrated factors. In: Vulkov, L.G., Waśniewski, J., Yalamov, P. (eds.) NAA 2000. LNCS, vol. 1988, pp. 439–450. Springer, Heidelberg (2001)CrossRefGoogle Scholar
  5. 5.
    Khader, M.M.: On the numerical solutions for the fractional diffusion equation. Commun. Nonlinear Sci. Numer. Simul. 16(6), 2535–2542 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Lin, Y., Xu, C.: Finite difference/spectral approximations for the time-fractional diffusion equation. J. Comput. Phys. 225, 1533–1552 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Mainardy, F.: Fractional calculus: Some basic problems in continuum and statistical mechanics. In: Carpinteri, A., Mainardy, F. (eds.) Fractals and Fractional Calculus in Continuum Mechanics, pp. 291–348. Springer (1997)Google Scholar
  8. 8.
    Podlubny, I.: Geometric and physical interpretation of fractional integration and fractional differentiation. Frac. Calc. Appl. Anal. 5(4), 367–386 (2002)MathSciNetzbMATHGoogle Scholar
  9. 9.
    Samarskii, A.A.: The theory of difference schemes. Marcel Dekker (2001)Google Scholar
  10. 10.
    Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional integrals and derivatives: Theory and applications. Gordon and Breach (1993)Google Scholar
  11. 11.
    Sweilam, N.H., Khader, M.M., Almwarm, H.M.: Numerical studies for the variable-order nonlinear fractional wave equation. Frac. Calc. Appl. Anal. 235(9), 2832–2841 (2011)zbMATHGoogle Scholar
  12. 12.
    Sweilam, N.H., Khader, M.M., Nagy, A.M.: Numerical solution of two-sided space-fractional wave equation using finite difference method. J. Comput. Appl. Math. 15(4), 669–683 (2012)Google Scholar
  13. 13.
    Taukenova, F.I., Shkhanukov-Lafishev, M.K.: Difference methods for solving boundary value problems for fractional differential equations. Comput. Math. Math. Phys. 46(10), 1785–1795 (2006)MathSciNetCrossRefGoogle Scholar
  14. 14.
    Vladimirov, V.S.: Equations of mathematical physics. Nauka, Moscow (1988) (in Russian)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Aleksandra Delić
    • 1
  1. 1.Faculty of MathematicsUniversity of BelgradeBelgradeSerbia

Personalised recommendations