Uniform Shift Estimates for Transmission Problems and Optimal Rates of Convergence for the Parametric Finite Element Method

  • Hengguang Li
  • Victor Nistor
  • Yu Qiao
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8236)


Let Ω ⊂ ℝ d , \(d \geqslant 1\), be a bounded domain with piecewise smooth boundary ∂ Ω and let U be an open subset of a Banach space Y. Motivated by questions in “Uncertainty Quantification,” we consider a parametric family P = (P y ) y ∈ U of uniformly strongly elliptic, second order partial differential operators P y on Ω. We allow jump discontinuities in the coefficients. We establish a regularity result for the solution u: Ω×U → ℝ of the parametric, elliptic boundary value/transmission problem P y u y  = f y , y ∈ U, with mixed Dirichlet-Neumann boundary conditions in the case when the boundary and the interface are smooth and in the general case for d = 2. Our regularity and well-posedness results are formulated in a scale of broken weighted Sobolev spaces Open image in new window of Babuška-Kondrat’ev type in Ω, possibly augmented by some locally constant functions. This implies that the parametric, elliptic PDEs (P y ) y ∈ U admit a shift theorem that is uniform in the parameter y ∈ U. In turn, this then leads to h m -quasi-optimal rates of convergence (i. e., algebraic orders of convergence) for the Galerkin approximations of the solution u, where the approximation spaces are defined using the “polynomial chaos expansion” of u with respect to a suitable family of tensorized Lagrange polynomials, following the method developed by Cohen, Devore, and Schwab (2010).


Transmission Problem Smooth Case Polynomial Chaos Polynomial Chaos Expansion Elliptic PDEs 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ammann, B., Ionescu, A., Nistor, V.: Sobolev spaces on Lie manifolds and regularity for polyhedral domains. Documenta Math (Electronic) 11, 161–206 (2006)MathSciNetzbMATHGoogle Scholar
  2. 2.
    Babuska, I., Nobile, F., Tempone, R.: A stochastic collocation method for elliptic partial differential equations with ramdom input data. SIAM Rev. 52(2), 317–355 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bacuta, C., Nistor, V.: A priori estimates and high order Galerkin approximation for parametric partial differential equations (work in progress)Google Scholar
  4. 4.
    Bacuta, C., Nistor, V., Zikatanov, L.: Improving the rate of convergence of ‘high order finite elements’ on polygons and domains with cusps. Numerische Mathematik 100, 165–184 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bacuta, C., Nistor, V., Zikatanov, L.: Improving the rate of convergence of high order finite elements on polyhedral II: Mesh refinements and interpolation. Numer. Funct. Anal. Optim. 28(7-8), 775–842 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cohen, A., DeVore, R., Schwab, C.: Convergence rates of best N-term Galerkin approximations for a class of elliptic PDEs. Found. Comput. Math. 10(6), 615–646 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Cohen, A., DeVore, R., Schwab, C.: Analytic regularity and polynomial approximation of parametric and stochastic elliptic PDEs. Anal. Appl. (Singap.) 9(1), 11–47 (2011)Google Scholar
  8. 8.
    Fichera, F.: Linear elliptic differential systems and eigenvalue problems. Lecture Notes in Mathematics, vol. 8. Springer, Berlin (1965)CrossRefzbMATHGoogle Scholar
  9. 9.
    Gerritsma, M., van der Steen, J., Vos, P., Karniadakis, G.: Time-dependent generalized polynomial chaos. J. Comput. Phys. 229(22), 8333–8363 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Li, H., Mazzucato, A., Nistor, V.: Analysis of the finite element method for transmission/mixed boundary value problems on general polygonal domains. Electron. Trans. Numer. Anal. 37, 41–69 (2010)MathSciNetzbMATHGoogle Scholar
  11. 11.
    Mazzucato, A., Nistor, V.: Well-posedness and regularity for the elasticity equation with mixed boundary conditions on polyhedral domains and domains with cracks. Arch. Ration. Mech. Anal. 195(1), 25–73 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Morrey, C.: Jr.: Second-order elliptic systems of differential equations. In: Contributions to the Theory of Partial Differential Equations. Annals of Mathematics Studies, vol. (33), pp. 101–159. Princeton University Press, Princeton (1954)Google Scholar
  13. 13.
    Nistor, V.: Schwab, Ch.: High order Galerkin approximations for parametric second order elliptic partial differential equations. ETH Seminar for Applied Mathematics Report 2012-21, to appear in M3AS (2012)Google Scholar
  14. 14.
    Roĭtberg, J., Šeftel′, Z.: On equations of elliptic type with discontinuous coefficients. Dokl. Akad. Nauk SSSR 146, 1275–1278 (1962).Google Scholar
  15. 15.
    Roĭtberg, J., Šeftel, Z.: General boundary-value problems for elliptic equations with discontinuous coefficients. Dokl. Akad. Nauk SSSR 148, 1034–1037 (1963).Google Scholar
  16. 16.
    Schwab, C., Todor, R.: Sparse finite elements for elliptic problems with stochastic loading. Numer. Math. 95(4), 707–734 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Wan, X., Karniadakis, G.: Error control in multi-element generalized polynomial chaos method for elliptic problems with random coefficients. Commun. Comput. Phys. 5(2-4), 793–820 (2009)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Hengguang Li
    • 1
  • Victor Nistor
    • 2
    • 3
  • Yu Qiao
    • 4
  1. 1.Department of MathematicsWayne State UniversityDetroitUSA
  2. 2.Department of MathematicsPennsylvania State UniversityUniversity ParkUSA
  3. 3.Inst. Math. Romanian Acad.BucharestRomania
  4. 4.College of Mathematics and Information ScienceShaanxi Normal UniversityXi’anP.R. China

Personalised recommendations