Skip to main content

Geometric Transversal Theory: T(3)-Families in the Plane

  • Chapter
Geometry — Intuitive, Discrete, and Convex

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 24))

Abstract

A line that intersects every member of a finite family F of convex sets in the plane is called a line transversal to F. In this paper we will survey the main results and open problems concerning T(3)-families: Finite families of convex sets in the plane in which every subfamily of size 3 admit a line transversal.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. N. Alon and G. Kalai, Bounding the piercing number, Discrete Comput Geom., 13 (1995), 245–256.

    Article  MATH  MathSciNet  Google Scholar 

  2. N. Alon, G. Kalai, J. Matoušek and R. Meshulam, Transversal numbers for hypergraphs arising in geometry, Adv in Appl Math., 29 (2002), 79–101.

    Article  MATH  MathSciNet  Google Scholar 

  3. L. Anderson and R. Wenger, Oriented matroids and hyperplane transversals, Adv. Math., 119 (1996), 117–125.

    Article  MATH  MathSciNet  Google Scholar 

  4. J. Arocha, J. Bracho and L. Montejano, A colorful theorem on transversal lines to plane convex sets, Combinatorica, 28 (2008), 379–384.

    Article  MATH  MathSciNet  Google Scholar 

  5. I. Bárány, A generalization of Carathéodory’s theorem, Discrete Math., 40 (1982), 141–152.

    Article  MATH  MathSciNet  Google Scholar 

  6. I. Bárány and R. Karasev, Notes about the Caratheodory number, Discrete Comput. Geom., 48 (2012), 783–792.

    Article  MATH  MathSciNet  Google Scholar 

  7. S. Basu, E. Goodman, A. Holmsen and R. Pollack, The Hadwiger transversal theorem for pseudolines, MSRI Publications Volume, 52 (2005), 87–97.

    MathSciNet  Google Scholar 

  8. J. Eckhoff, Transversalenprobleme in der Ebene, Arch. Math., 24 (1973), 195–202.

    Article  MATH  MathSciNet  Google Scholar 

  9. J. Eckhoff, A Gallai-type transversal problem in the plane, Discrete Comput. Geom., 9 (1993), 203–214.

    Article  MATH  MathSciNet  Google Scholar 

  10. J. Eckhoff, Helly, Radon, and Carathéodory type theorems, Handbook of convex geometry, Vol. A, 389–448, North-Holland Amsterdam, 1993.

    Google Scholar 

  11. J. Eckhoff,A survey of the Hadwiger-Debrunner (p, q)-problem, Discrete and Computational Geometry — The Goodman-Pollack Festschrift, 347–377, Algorithms Combin. 25, Springer — Berlin, 2003.

    Chapter  Google Scholar 

  12. J. Eckhoff, Common transversals in the plane: The fractional perspective, Europ. J. Combinatorics, 29 (2008), 1872–1880.

    Article  MATH  MathSciNet  Google Scholar 

  13. J. E. Goodman and R. Pollack, Hadwiger’s transversal theorem in higher dimensions, J. Amer. Math. Soc., 1 (1998), 301–309.

    MathSciNet  Google Scholar 

  14. J. E. Goodman, R. Pollack and R. Wenger, Geometric transversal theory, New trends in discrete and computational geometry, 163–198, Algorithms Combin., 10, Springer-Berlin, 1993.

    Chapter  Google Scholar 

  15. H. Hadwiger, Über Eibereiche gemeinsamer Treffgeraden, Portugal Math., 16 (1957), 23–29.

    MATH  MathSciNet  Google Scholar 

  16. H. Hadwiger, H. Debrunner and V. Klee, Combinatorial Geometry in the Plane, Holt, Rinehart & Winston, New York, 1964.

    Google Scholar 

  17. A. F. Holmsen, Recent Progress on line transversals in the plane, Contemp Math., 453 (2008), 283–297.

    Article  MathSciNet  Google Scholar 

  18. A. F. Holmsen, New results for T(3)-families in the plane, Mathematika, 56 (2010), 86–92.

    Article  MATH  MathSciNet  Google Scholar 

  19. M. Katchalski, T. Lewis and J. Zaks, Geometric permutations for convex sets, Discrete Math., 54 (1985), 271–284.

    Article  MATH  MathSciNet  Google Scholar 

  20. M. Katchalski and A. Liu, A problem of geometry in ℝn, Proc. Amer. Math. Soc., 75 (1979), 284–288.

    MATH  MathSciNet  Google Scholar 

  21. M. Katchalski and A. Liu, Symmetric twins and common transversals, Pacific J. Math., 86 (1980), 513–515.

    Article  MATH  MathSciNet  Google Scholar 

  22. D. Kramer, Transversalenprobleme vom Hellyschen und Gallaischen Typ. Dissertation, Universität Dortmund, 1974.

    Google Scholar 

  23. R. Pollack and R. Wenger, Necessary and sufficient conditions for hyperplane transversals, Combinatorica, 10 (1990), 307–311.

    Article  MATH  MathSciNet  Google Scholar 

  24. H. Tverberg, On geometric permutations and the Katchalski-Lewis conjecture on partial transversals for translates, DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 6 (1991), 351–361.

    MathSciNet  Google Scholar 

  25. R. Wenger, A generalization of Hadwiger’s transversal theorem to intersecting sets, Discrete Comput. Geom., 5 (1990), 383–388.

    Article  MATH  MathSciNet  Google Scholar 

  26. R. Wenger, Helly-type theorems and geometric transversals, Handbook of discrete and computational geometry, Second Edition, 73–96, CRC Press Ser Discrete Math Appl, 1997.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Holmsen, A.F. (2013). Geometric Transversal Theory: T(3)-Families in the Plane. In: Bárány, I., Böröczky, K.J., Tóth, G.F., Pach, J. (eds) Geometry — Intuitive, Discrete, and Convex. Bolyai Society Mathematical Studies, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41498-5_7

Download citation

Publish with us

Policies and ethics