Skip to main content

Applications of an Idea of Voronoĭ, a Report

  • Chapter

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 24))

Abstract

The idea of Voronoĭ’s proof of his well-known criterion that a positive definite quadratic form is extreme if and only if it is eutactic and perfect, is as follows: Identify positive definite quadratic forms on 𝔼d with their coefficient vectors in \({\mathbb{E}^{\frac{1}{d}\left( {d + 1} \right)}}\). This translates certain problems on quadratic forms into more transparent geometric problems in \({\mathbb{E}^{\frac{1}{d}\left( {d + 1} \right)}}\) which, sometimes, are easier to solve. Since the 1960s this idea has been applied successfully to various problems of quadratic forms, lattice packing and covering of balls, the Epstein zeta function, closed geodesics on the Riemannian manifolds of a Teichmüller space, and other problems.

This report deals with recent applications of Voronoĭ’s idea. It begins with geometric properties of the convex cone of positive definite quadratic forms and a finiteness theorem. Then we describe applications to lattice packings of balls and smooth convex bodies, to the Epstein zeta function and a generalization of it and, finally, to John type and minimum position problems.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ash, A., On eutactic forms, Canad. J. Math., 29 (1977), 1040–1054.

    Article  MATH  MathSciNet  Google Scholar 

  2. Ash, A., On the existence of eutactic forms, Bull. London Math. Soc., 12 (1980), 192–196.

    Article  MATH  MathSciNet  Google Scholar 

  3. Bachoc, C., Designs, groups and lattices, J. Théor. Nombres Bordeaux, 17 (2005), 25–44.

    Article  MATH  MathSciNet  Google Scholar 

  4. Bachoc, C. and Venkov, B., Modular forms, lattices and spherical designs. Réseaux euclidiens, designs sphériques et formes modulaires, 87–111, Monogr. Enseign. Math. 37, Enseignement Math., Geneva, 2001.

    MathSciNet  Google Scholar 

  5. Ball, K. M., Ellipsoids of maximal volume in convex bodies, Geom. Dedicata, 41 (1992), 241–250.

    Article  MATH  MathSciNet  Google Scholar 

  6. Bambah, R. P., On lattice coverings by spheres, Proc. Nat. Inst. Sci. India, A 23(954), 25–52.

    Google Scholar 

  7. Barnes, E. S. and Dickson, T. J., Extreme coverings of n-space by spheres, J. Austral. Math. Soc., 7 (1967), 115–127.

    Article  MathSciNet  Google Scholar 

  8. Barvinok, A., A course in convexity, Amer. Math. Soc., Providence, RI, 2002.

    Google Scholar 

  9. Bastero, J. and Romance, M., John’s decomposition of the identity in the non-convex case, Positivity, 6 (2002), 1–16.

    Article  MATH  MathSciNet  Google Scholar 

  10. Bavard, C., Systole et invariant d’Hermite, J. Reine Angew. Math., 482 (1997), 93–120.

    MATH  MathSciNet  Google Scholar 

  11. Bavard, C., Théorie de Voronoĭ géométrique. Propriétés de finitude pour les familles de réseaux et analogues, Bull. Soc. Math. France, 133 (2005), 205–257.

    MATH  MathSciNet  Google Scholar 

  12. Bergé, A.-M. and Martinet, J., Sur un probléme de dualité lié aux sphéres en géométrie des nombres, J. Number Theory, 32 (1989), 14–42.

    Article  MATH  MathSciNet  Google Scholar 

  13. Bergé, A.-M. and Martinet, J., Sur la classification des réseaux eutactiques, J. London Math. Soc. (2), 53 (1996), 417–432.

    Article  MATH  MathSciNet  Google Scholar 

  14. Bertraneu, A. and Fichet, B., Étude de la frontière de l’ensemble des formes quadratiques positives, sur un espace vectoriel de dimension finie, J. Math. Pures Appl. (9), 61 (1982), 207–218.

    MATH  MathSciNet  Google Scholar 

  15. Böröczky, K., Jr. and Schneider, R., A characterization of the duality mapping for convex bodies, Geom. Funct. Anal., 18 (2008), 657–667.

    Article  MATH  MathSciNet  Google Scholar 

  16. Cassels, J. W. S., On a problem of Rankin about the Epstein zeta-function, Proc. Glasgow Math. Assoc., 4 (1959), 73–80.

    Article  MATH  MathSciNet  Google Scholar 

  17. Cohn, H. and Kumar, A., The densest lattice in twenty-four dimensions, Electron. Res. Announc. Amer. Math. Soc., 10 (2004), 58–67 (electronic).

    Article  MATH  MathSciNet  Google Scholar 

  18. Conway, J. H. and Sloane, N. J. A., Sphere packings, lattices and groups, 3rd ed. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov, Grundlehren Math. Wiss. 290, Springer-Verlag, New York, 1999.

    Google Scholar 

  19. Coulangeon, R., Spherical designs and zeta functions of lattices, Int. Math. Res. Not. Art. ID, 49620 (2006), 16pp.

    Google Scholar 

  20. Danzer, L., Laugwitz, D. and Lenz, H., Über das Löwnersche Ellipsoid und sein Analogon unter den einem Eikörper einbeschriebenen Ellipsoiden, Arch. Math., 8 (1957), 214–219.

    Article  MATH  MathSciNet  Google Scholar 

  21. Delone, B. N. and Ryshkov, S. S., A contribution to the theory of the extrema of a multi-dimensional ζ-function, Dokl. Akad. Nauk SSSR, 173 (1967), 991–994, Soviet Math. Dokl., 8 (1967), 499–503.

    Google Scholar 

  22. Delone, B. N., Dolbilin, N. P., Ryshkov, S. S. and Shtogrin, M. I., A new construction of the theory of lattice coverings of an n-dimensional space by congruent balls, Izv. Akad. Nauk SSSR Ser. Mat., 34 (1970), 289–298.

    MATH  MathSciNet  Google Scholar 

  23. Engel, P., Geometric crystallography, in: Handbook of convex geometry, B 989–1041, North-Holland, Amsterdam, 1993.

    Chapter  Google Scholar 

  24. Ennola, V., On a problem about the Epstein zeta-function, Proc. Cambridge Philos. Soc., 60 (1964), 855–875.

    Article  MATH  MathSciNet  Google Scholar 

  25. Erdös, P., Gruber, P. M. and Hammer, J., Lattice points, Longman Scientific, Harlow, Essex, 1989.

    MATH  Google Scholar 

  26. Giannopoulos, A. A. and Milman, V. D., Extremal problems and isotropic positions of convex bodies, Israel J. Math., 117 (2000), 29–60.

    Article  MATH  MathSciNet  Google Scholar 

  27. Giannopoulos, A. A. and Milman, V. D., Euclidean structure in finite dimensional normed spaces, in: Handbook of the geometry of Banach spaces, I 707–779, North-Holland, Amsterdam, 2001.

    Chapter  Google Scholar 

  28. Giannopoulos, A. A. and Papadimitrakis, M., Isotropic surface area measures, Mathematika, 46 (1999), 1–13.

    Article  MATH  MathSciNet  Google Scholar 

  29. Giannopoulos, A. A., Perissinaki, I. and Tsolomitis, A., John’s theorem for an arbitrary pair of convex bodies, Geom. Dedicata, 84 (2001), 63–79.

    Article  MATH  MathSciNet  Google Scholar 

  30. Goethals, J.-M. and Seidel, J. J., Spherical designs, in: Relations between combinatorics and other parts of mathematics (Proc. Sympos. Pure Math., Columbus 1978) 255–272, Proc. Sympos. Pure Math. XXXIV, Amer. Math. Soc., Providence RI, 1979.

    Google Scholar 

  31. Gordon, Y., Litvak, A. E., Meyer, M. and Pajor, A., John’s decomposition in the general case and applications, J. Differential Geom., 68 (2004), 99–119.

    MATH  MathSciNet  Google Scholar 

  32. Gruber, P. M., Die meisten konvexen Körper sind glatt, aber nicht zu glatt, Math. Ann., 228 (1977), 239–246.

    Google Scholar 

  33. Gruber, P. M., Typical convex bodies have surprisingly few neighbours in densest lattice packings, Studia Sci. Math. Hungar., 21 (1986), 163–173.

    MATH  MathSciNet  Google Scholar 

  34. Gruber, P. M., Minimal ellipsoids and their duals, Rend. Circ. Mat. Palermo (2) 37 (1988), 35–64.

    Article  MATH  MathSciNet  Google Scholar 

  35. Gruber, P. M., The space of convex bodies, in: Handbook of convex geometry A, 301–318, North-Holland, Amsterdam, 1993.

    Chapter  Google Scholar 

  36. Gruber, P. M., Baire categories in convexity, in: Handbook of convex geometry B, 1327–1346, North-Holland, Amsterdam, 1993.

    Chapter  Google Scholar 

  37. Gruber, P. M., Convex and discrete geometry, Grundlehren Math. Wiss., 336, Springer, Berlin, Heidelberg, New York, 2007.

    Google Scholar 

  38. Gruber, P. M., Application of an idea of Voronoĭ to John type problems, Adv. in Math., 218 (2008), 299–351.

    Article  Google Scholar 

  39. Gruber, P. M., Geometry of the cone of positive quadratic forms, Forum Math., 21 (2009), 147–166.

    Article  MATH  MathSciNet  Google Scholar 

  40. Gruber, P. M., On the uniqueness of lattice packings and coverings of extreme density, Adv. in Geom., 11 (2011), 691–710.

    Article  MATH  Google Scholar 

  41. Gruber, P. M., Voronoĭ type criteria for lattice coverings with balls, Acta Arith., 149 (2011), 371–381.

    Article  MATH  MathSciNet  Google Scholar 

  42. Gruber, P. M., John and Löwner ellipsoids, Discrete Comput. Geom., 46 (2011), 776–788.

    Article  MATH  MathSciNet  Google Scholar 

  43. Gruber, P. M., Lattice packing and covering of convex bodies, Proc. Steklov Inst. Math., 275 (2011), 229–238.

    Article  MATH  MathSciNet  Google Scholar 

  44. Gruber, P. M., Application of an idea of Voronoĭ to lattice packing, in preparation.

    Google Scholar 

  45. Gruber, P. M., Application of an idea of Voronoĭ to lattice zeta functions, Proc. Steklov Inst. Math., 276 (2012), to appear.

    Google Scholar 

  46. Gruber, P. M. and Lekkerkerker, C. G., Geometry of numbers, 2nd ed., North-Holland, Amsterdam, 1987, Nauka, Moscow, 2008.

    MATH  Google Scholar 

  47. Gruber, P. M. and Schuster, F. E., An arithmetic proof of John’s ellipsoid theorem, Arch. Math. (Basel), 85 (2005), 82–88.

    Article  MATH  MathSciNet  Google Scholar 

  48. Grünbaum, B., Convex polytopes, 2nd ed., Prepared by V. Kaibel, V. Klee, G. M. Ziegler, Springer, New York, 2003.

    Chapter  Google Scholar 

  49. John, F., Extremum problems with inequalities as subsidiary conditions, in: Studies and Essays, Presented to R. Courant on his 60th Birthday, January 8, 1948, 187–204, Interscience, New York, 1948.

    Google Scholar 

  50. Klee, V., Some new results on smoothness and rotundity in normed linear spaces, Math. Ann., 139 (1959), 51–63.

    Article  MATH  MathSciNet  Google Scholar 

  51. Klein, F., Die allgemeine lineare Transformation der Linienkoordinaten, Math. Ann., 2 (1870), 366–370, Ges. Math. Abh. I, Springer, Berlin, 1921.

    Google Scholar 

  52. Lim, S. C. and Teo, L. P., On the minima and convexity of Epstein zeta function, J. Math. Phys., 49 (2008), 073513, 25pp.

    Article  MathSciNet  Google Scholar 

  53. Lindenstrauss, J. and Milman, V. D., The local theory of normed spaces and its applications to convexity, in: Handbook of convex geometry B, 1154–1220, North-Holland, Amsterdam, 1993.

    Google Scholar 

  54. Martinet, J., Perfect lattices in Euclidean spaces, Grundlehren Math. Wiss. 325, Springer, Berlin, Heidelberg, New York, 2003.

    Google Scholar 

  55. Milman, V. D. and Pajor, A., Isotropic position and inertia ellipsoids and zonoids of the unit ball of a normed n-dimensional space, in: Geometric aspects of functional analysis (1987–88) 64–104, Lecture Notes in Math., 1376, Springer, Berlin, 1989.

    Chapter  Google Scholar 

  56. Montgomery, H. L., Minimal theta functions, Glasgow Math. J., 30 (1988), 75–85.

    Article  MATH  MathSciNet  Google Scholar 

  57. Pełczyński, A., Remarks on John’s theorem on the ellipsoid of maximal volume inscribed into a convex symmetric body in R n, Note Mat., 10 (1990), 395–410.

    MathSciNet  Google Scholar 

  58. Plücker, J., Neue Geometrie des Raumes gegründet auf die Betrachtung der geraden Linie als Raumelement, I. Abth. 1868 mit einem Vorwort von A. Clebsch., II. Abth. 1869, herausgegeben von F. Klein, Teubner, Leipzig, 1868.

    Google Scholar 

  59. Praetorius, D., Ellipsoide in der Theorie der Banachräume, Master Thesis, U Kiel, 2000.

    Google Scholar 

  60. Praetorius, D., Remarks and examples concerning distance ellipsoids, Colloq. Math., 93 (2002), 41–53.

    Article  MATH  MathSciNet  Google Scholar 

  61. Rankin, R. A., A minimum problem for the Epstein zeta-function, Proc. Glasgow Math. Assoc., 1 (1953), 149–158.

    Article  MATH  MathSciNet  Google Scholar 

  62. Rudelson, M., Contact points of convex bodies, Israel J. Math., 101 (1997), 93–124.

    Article  MATH  MathSciNet  Google Scholar 

  63. Ryshkov, S. S., On the question of the final ζ-optimality of lattices that yield the densest packing of n-dimensional balls, Sibirsk. Mat. Zh., 14 (1973), 1065–1075, 1158.

    MATH  Google Scholar 

  64. Ryshkov, S. S., Geometry of positive quadratic forms, in: Proc. Int. Congr. of Math. (Vancouver, 1974) 1, 501–506, Canad. Math. Congress, Montreal, 1975.

    Google Scholar 

  65. Ryshkov, S. S., On the theory of the cone of positivity and the theory of the perfect polyhedra Π(n) and n(m), Chebyshevskii Sb., 3 (2002), 84–96.

    MATH  MathSciNet  Google Scholar 

  66. Ryshkov S. S. and Baranovskiĭ, E. P., Classical methods of the theory of lattice packings, Uspekhi Mat. Nauk, 34 (1979), 3–63, 236, Russian Math. Surveys, 34 (1979), 1–68.

    MATH  Google Scholar 

  67. Sarnak, P. and Strömbergsson, A., Minima of Epstein’s zeta function and heights of flat tori, Invent. Math., 165 (2006), 115–151.

    Article  MATH  MathSciNet  Google Scholar 

  68. Schmutz, P., Riemann surfaces with shortest geodesic of maximal length, Geom. Funct. Anal., 3 (1993), 564–631.

    Article  MATH  MathSciNet  Google Scholar 

  69. Schmutz Schaller (Schmutz), P., Systoles on Riemann surfaces, Manuscripta Math., 85 (1994), 428–447.

    Google Scholar 

  70. Schmutz Schaller, P., Geometry of Riemann surfaces based on closed geodesics, Bull. Amer. Math. Soc. (N.S.), 35 (1998), 193–214.

    Article  MATH  MathSciNet  Google Scholar 

  71. Schmutz Schaller, P., Perfect non-extremal Riemann surfaces, Canad. Math. Bull., 43 (2000), 115–125.

    Article  MATH  MathSciNet  Google Scholar 

  72. Schneider, R., Convex bodies: the Brunn-Minkowski theory, Cambridge Univ. Press, Cambridge, 1993.

    Book  MATH  Google Scholar 

  73. Schneider, R., The endomorphisms of the lattice of closed convex cones, Beiträge Algebra Geom., 49 (2008), 541–547.

    MATH  Google Scholar 

  74. Schürmann, A., Computational geometry of positive definite quadratic forms, Amer. Math. Soc., Providence, RI, 2009.

    Google Scholar 

  75. Schröcker, H.-P., Uniqueness results for minimal enclosing ellipsoids, Comput. Aided Geom. Design, 25 (2008), 756–762.

    Article  MATH  MathSciNet  Google Scholar 

  76. Schürmann, A. and F. Vallentin, F., Computational approaches to lattice packing and covering problems, Discrete Comput. Geom., 35 (2006), 73–116.

    Article  MATH  MathSciNet  Google Scholar 

  77. Swinnerton-Dyer, H. P. F., Extremal lattices of convex bodies, Proc. Cambridge Philos. Soc., 49 (1953), 161–162.

    Article  MATH  MathSciNet  Google Scholar 

  78. Venkov, B., Réseaux et designs sphériques, in: Réseaux euclidiens, designs sphériques et formes modulaires 10–86, Monogr. Enseign. Math., 37, Enseignement Math., Geneva, 2001.

    Google Scholar 

  79. Voronoĭ (Voronoï, Woronoi), G. F., Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Première mémoire: Sur quelques propriétés des formes quadratiques positives parfaites, J. Reine Angew. Math., 133 (1908), 97–178, Coll. Works, II, 171–238.

    MATH  Google Scholar 

  80. Voronoĭ, G. F., Nouvelles applications des paramètres continus à la théorie des formes quadratiques. Deuxième mémoire. Recherches sur les paralléloèdres primitifs I, II, J. Reine Angew. Math., 134 (1908), 198–267 et 136 (1909), 67–181, Coll. Works, II, 239–368.

    MATH  Google Scholar 

  81. Voronoĭ, G. F., Collected works I➁III, Izdat. Akad. Nauk Ukrain. SSSR, Kiev, 1952.

    Google Scholar 

  82. Wickelgren, K., Linear transformations preserving the Voronoi polyhedron, Manuscript, 2001.

    Google Scholar 

  83. Zong, C., Sphere packings, Springer, New York, 1999.

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Additional information

In memoriam László Fejes Tóth (1915–2005)

Rights and permissions

Reprints and permissions

Copyright information

© 2013 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Gruber, P.M. (2013). Applications of an Idea of Voronoĭ, a Report. In: Bárány, I., Böröczky, K.J., Tóth, G.F., Pach, J. (eds) Geometry — Intuitive, Discrete, and Convex. Bolyai Society Mathematical Studies, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41498-5_5

Download citation

Publish with us

Policies and ethics