Skip to main content

Extremal Properties of Random Mosaics

  • Chapter

Part of the book series: Bolyai Society Mathematical Studies ((BSMS,volume 24))

Abstract

László Fejes Tóth’s fascinating book [2] demonstrates in many ways the phenomenon that figures of discrete or convex geometry that are very economical, namely solving an extremal problem of isoperimetric type, often show a high degree of symmetry. Among the examples are also planar mosaics where, for instance, an extremal property leads to the hexagonal pattern. Mosaics, or tessellations, have become increasingly important for applications. Random tessellations in two or three dimensions have been suggested as models for various real structures. We refer, e.g., to chapter 10 of the book by Stoyan, Kendall, Mecke [35] and to the book by Okabe, Boots, Sugihara, and Chiu [29] on Voronoi tessellations, which also contains a chapter on random mosaics. Apart from possible applications, random mosaics are also an interesting object of study from a purely geometric point of view. Among the results of geometric appeal that have been obtained, some concern extremal problems for (roughly speaking) expected sizes of average cells under some side condition, leading to random mosaics with high symmetry or of a very simple type, namely made up of parallelepipeds only. High symmetry here means that the distribution of the random mosaic, which is usually assumed to be translation invariant, is also invariant under rotations. Extremal problems for the sizes of average cells (not taking expectations) seem senseless at first, since extrema cannot be attained.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alexander, R., The width and diameter of a simplex, Geom. Dedicata, 6 (1977), 87–94.

    Article  MATH  Google Scholar 

  2. Fejes Tóth, L., Reguläre Figuren, Akadémiai Kiadó, Budapest and Teubner, Leipzig (1965).

    Google Scholar 

  3. Hug, D., Reitzner, M. and Schneider, R., The limit shape of the zero cell in a stationary Poisson hyperplane tessellation, Ann. Probab., 32 (2004), 1140–1167.

    Article  MATH  MathSciNet  Google Scholar 

  4. Hug, D., Reitzner, M. and Schneider, R., Large Poisson-Voronoi cells and Crofton cells, Adv. Appl. Prob., 36 (2004), 667–690.

    Article  MATH  MathSciNet  Google Scholar 

  5. Hug, D. and Schneider, R., Large cells in Poisson Delaunay tessellations, Discrete Comput. Geom., 31 (2004), 503–514.

    Article  MATH  MathSciNet  Google Scholar 

  6. Hug, D. and Schneider, R., Large typical cells in Poisson-Delaunay mosaics, Rev. Roumaine Math. Pures Appl., 50 (2005), 657–670.

    MATH  MathSciNet  Google Scholar 

  7. Hug, D. and Schneider, R., Asymptotic shapes of large cells in random tessellations, Geom. Funct. Anal., 17 (2007), 156–191.

    Article  MATH  MathSciNet  Google Scholar 

  8. Hug, D. and Schneider, R., Typical cells in Poisson hyperplane tessellations, Discrete Comput. Geom., 38 (2007), 305–319.

    Article  MATH  MathSciNet  Google Scholar 

  9. Hug, D. and Schneider, R., Large faces in Poisson hyperplane mosaics, Ann. Probab., 38 (2010), 1320–1344.

    Article  MATH  MathSciNet  Google Scholar 

  10. Hug, D. and Schneider, R., Faces of Poisson-Voronoi mosaics, Probab. Theory Related Fields, 151 (2011), 125–151.

    Article  MATH  MathSciNet  Google Scholar 

  11. Hug, D. and Schneider, R., Faces with given directions in anisotropic Poisson hyperplane mosaics, Adv. Appl. Prob., 43 (2011), 308–321.

    Article  MATH  MathSciNet  Google Scholar 

  12. Hug, D. and Schneider, R., Reverse inequalities for zonoids and their application, Adv. Math., 228 (2011), 2634–2646.

    Article  MATH  MathSciNet  Google Scholar 

  13. Kovalenko, I. N., A proof of a conjecture of David Kendall on the shape of random polygons of large area, (Russian) Kibernet. Sistem. Anal. (1997), 3–10, 187; Engl. transl., Cybernet. Systems Anal., 33 (1997), 461-467.

    Google Scholar 

  14. Kovalenko, I. N., An extension of a conjecture of D. G. Kendall concerning shapes of random polygons to Poisson Voronoï cells, in: Engel, P. et al. (eds.) Voronoï’s impact on modern science, Book I. Transl. from the Ukrainian, Kyiv: Institute of Mathematics. Proc. Inst. Math. Natl. Acad. Sci. Ukr., Math. Appl., 212 (1998), 266–274.

    Google Scholar 

  15. Kovalenko, I. N., A simplified proof of a conjecture of D. G. Kendall concerning shapes of random polygons, J. Appl. Math. Stochastic Anal., 12 (1999), 301–310.

    Article  MATH  MathSciNet  Google Scholar 

  16. Mecke, J., Inequalities for intersection densities of superpositions of stationary Poisson hyperplane processes, in: Jensen, E. B., Gundersen, H. J. G. (eds.) Proc. Second Int. Workshop Stereology, Stochastic Geometry, pp. 115–124, Aarhus (1983).

    Google Scholar 

  17. Mecke, J., Isoperimetric properties of stationary random mosaics, Math. Nachr., 117 (1984), 75–82.

    Article  MATH  MathSciNet  Google Scholar 

  18. Mecke, J., On some inequalities for Poisson networks, Math. Nachr., 128 (1986), 81–86.

    Article  MATH  MathSciNet  Google Scholar 

  19. Mecke, J., An extremal property of random flats, J. Microsc., 151 (1988), 205–209.

    Article  Google Scholar 

  20. Mecke, J., On the intersection density of flat processes, Math. Nachr., 151 (1991), 69–74.

    Article  MATH  MathSciNet  Google Scholar 

  21. Mecke, J., Inequalities for the anisotropic Poisson polytope, Adv. Appl. Prob., 27 (1995), 56–62.

    Article  MATH  MathSciNet  Google Scholar 

  22. Mecke, J., Inequalities for mixed stationary Poisson hyperplane tessellations, Adv. Appl. Prob., 30 (1998), 921–928.

    Article  MATH  MathSciNet  Google Scholar 

  23. Mecke, J., On the relationship between the 0-cell and the typical cell of a stationary random tessellation, Pattern Recognition, 32 (1999), 1645–1648.

    Article  Google Scholar 

  24. Mecke, J. and Osburg, I., On the shape of large Crofton parallelotopes, Math. Notae, 41 (2001/02) (2003), 149–157.

    MathSciNet  Google Scholar 

  25. Mecke, J., Schneider, R., Stoyan, D. and Weil, W., Stochastische Geometrie, DMV-Seminar 16, Birkhäuser, Basel (1990).

    Book  MATH  Google Scholar 

  26. Mecke, J. and Thomas, C., On an extreme value problem for flat processes, Commun. Stat., Stochastic Models (2), 2 (1986), 273–280.

    Article  MATH  MathSciNet  Google Scholar 

  27. Miles, R. E., Random polytopes: the generalisation to n dimensions of the intervals of a Poisson process, Ph.D. Thesis, Cambridge University (1961).

    Google Scholar 

  28. Miles, R. E., A heuristic proof of a long-standing conjecture of D. G. Kendall concerning the shapes of certain large random polygons, Adv. Appl. Prob., 27 (1995), 397–417.

    Article  MATH  MathSciNet  Google Scholar 

  29. Okabe, A., Boots, B., Sugihara, K. and Chiu, S. N., Spatial Tessellations; Concepts and Applications of Voronoi Diagrams, 2nd ed., Wiley, Chichester (2000).

    Google Scholar 

  30. Schneider, R., Convex Bodies: the Brunn-Minkowski Theory, Cambridge University Press, Cambridge (1993).

    Book  MATH  Google Scholar 

  31. Schneider, R., Nonstationary Poisson hyperplanes and their induced tessellations, Adv. Appl. Prob., 35 (2003), 139–158.

    Article  MATH  Google Scholar 

  32. Schneider, R., Weighted faces of Poisson hyperplane tessellations, Adv. Appl. Prob., 41 (2009), 682–694.

    Article  MATH  Google Scholar 

  33. Schneider, R., Vertex numbers of weighted faces in Poisson hyperplane mosaics, Discrete Comput. Geom., 44, 599–607 (2010).

    Article  MATH  MathSciNet  Google Scholar 

  34. Schneider, R. and Weil, W., Stochastic and Integral Geometry, Springer, Berlin, Heidelberg (2008).

    Book  MATH  Google Scholar 

  35. Stoyan, D., Kendall, W. S. and Mecke, J., Stochastic Geometry and Its Applications, 2nd ed., Wiley, Chichester (1995).

    Google Scholar 

  36. Tanner, R. M., Some content maximizing properties of the regular simplex, Pacific J. Math., 52 (1974), 611–616.

    Article  MATH  MathSciNet  Google Scholar 

  37. Wieacker, J. A., Geometric inequalities for random surfaces, Math. Nachr., 142 (1989), 73–106.

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 János Bolyai Mathematical Society and Springer-Verlag

About this chapter

Cite this chapter

Schneider, R. (2013). Extremal Properties of Random Mosaics. In: Bárány, I., Böröczky, K.J., Tóth, G.F., Pach, J. (eds) Geometry — Intuitive, Discrete, and Convex. Bolyai Society Mathematical Studies, vol 24. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41498-5_11

Download citation

Publish with us

Policies and ethics