Skip to main content

Effects of Noise on Sound Detection and Acoustic Communication in Fishes

  • Chapter
  • First Online:
Animal Communication and Noise

Part of the book series: Animal Signals and Communication ((ANISIGCOM,volume 2))

Abstract

The ambient noise in aquatic habitats is characterized by a large variety of noise levels and spectral profiles due to various abiotic and biotic factors such as running water, wind, tides, and vocalizing animals. Fish hearing sensitivity declines when exposed to high noise levels or in the presence of masking noise, in particular, in taxa possessing hearing enhancements. Most vocal fishes communicate over short distances (<0.5 m), probably because of low sound levels produced, low sound frequencies and the ambient noise conditions. Some species exploit ‘quiet windows’ of low spectral noise levels for acoustic communication. Human-made noise such as ship noise masks the hearing abilities of fishes and hinders acoustic communication. Whether fishes are able to cope with anthropogenic noise by increasing sound amplitude, shifting dominant frequencies of sounds, or by other mechanisms remains unknown.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Amorim MCP (2006) Diversity in sound production in fish. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes, vol 1. Science Publisher, Enfield, pp 71–105

    Google Scholar 

  • Amoser S, Ladich F (2003) Diversity in noise-induced temporary hearing loss in otophysines fishes. J Acoust Soc Am 113:2170–2179

    Article  PubMed  Google Scholar 

  • Amoser S, Ladich F (2005) Are hearing sensitivities of freshwater fish adapted to the ambient noise in their habitats? J Exp Biol 208:3533–3542

    Article  PubMed  Google Scholar 

  • Amoser S, Wysocki LE, Ladich F (2004) Noise emission during the first powerboat race in an Alpine lake and potential impact on fish communities. J Acoust Soc Am 116:3789–3797

    Article  PubMed  Google Scholar 

  • Amoser S, Ladich F (2010) Year-round variability of ambient noise in temperate freshwater habitats and its implications for fishes. Aquat Sci 72:371–378

    Article  PubMed Central  PubMed  Google Scholar 

  • Andrew RK, Howe BM, Mercer JA, Dzieciuch MA (2002) Ocean ambient sounds: comparing the 1960s with the 1990s for a receiver off the Californian coast. Acoust Res Lett Online 3:65–70

    Article  Google Scholar 

  • Andrew RK, Howe BM, Mercer JA (2011) Long-time trends in ship traffic noise for four sites off the North American West Coast. J Acoust Soc Am 129:642–651

    Article  PubMed  Google Scholar 

  • Barimo JF, Fine ML (1998) Relationship of swim-bladder shape to the directionality pattern of underwater sound in the oyster toadfish. Can J Zool 76:134–143

    Article  Google Scholar 

  • Belanger AJ, Bobeica I, Higgs DM (2010) The effect of stimulus type and background noise on hearing abilities of the round goby Neogobius melanostomus. J Fish Biol 77:1488–1504

    Article  CAS  PubMed  Google Scholar 

  • Boussard A (1981) The reactions of roach (Rutilus rutilus) and rudd (Scardinus erythrophthalmus) to noises produced by high speed boating. In: Proceeding of 2nd British freshwater fisheries conference, pp 188–200

    Google Scholar 

  • Braun CB, Grande T (2008) Evolution of peripheral mechanisms for the enhancement of sound reception. In: Webb JF, Popper AN, Fay RR (eds) Fish bioacoustics. Springer, New York, pp 99–144

    Chapter  Google Scholar 

  • Brumm H, Zollinger SA (2011) The evolution of the Lombard effect: 100 years of psychoacoustic research. Behaviour 148:1173–1198

    Article  Google Scholar 

  • Chapman CJ, Hawkins AD (1973) A field study of hearing in the cod, Gadus morhua L. J Comp Physiol A 85:147–167

    Article  Google Scholar 

  • Chapman CJ (1973) Field studies of hearing in teleost fish. Helgol wiss Meeresunters 24:371–390

    Article  Google Scholar 

  • Codarin A, Wysocki LE, Ladich F, Picciulin M (2009) Effects of ambient and boat noise on hearing and communication in three fish species living in a marine protected area (Miramare, Italy). Mar Poll Bull 58:1880–1887

    Google Scholar 

  • Coers A, Bouton N, Vincourt D, Slabbekoorn H (2008) Fluctuating noise conditions may limit acoustic communication distance in rock-pool blenny. Bioacoustics 17:63–64

    Article  Google Scholar 

  • Crawford JD, Jacob P, Benech V (1997) Sound production and reproductive ecology of strongly acoustic fish in Africa: Pollimyrus isidori, Mormyridae. Behaviour 134:677–725

    Article  Google Scholar 

  • Enger PS (1981) Frequency discrimination in teleosts—central or peripheral. In: Tavolga WN, Popper AN, Fay RR (eds) Hearing and sound communication in fishes. Springer, New York, pp 243–253

    Chapter  Google Scholar 

  • Fay RR (1974) Masking of tones by noise for the goldfish (Carassius auratus). J Comp Physiol Psychol 87:708–716

    Article  CAS  PubMed  Google Scholar 

  • Fay RR (2009) Sound scapes and the sense of hearing in fishes. Integr Zool 4:26–32

    Article  PubMed  Google Scholar 

  • Fine ML, Lenhardt ML (1983) Shallow-water propagation of the toadfish mating call. Comp Biochem Physiol 76A:225–231

    Article  Google Scholar 

  • Fine ML, Malloy KL, King CB, Mitchell SL, Cameron TM (2001) Movement and sound generation by the toadfish swimbladder. J Comp Physiol 187A:371–379

    Article  Google Scholar 

  • Handegard NO, Michalsen K, Tjřstheim D (2003) Avoidance behaviour in cod (Gadus morhua) to a bottom-trawling vessel. Aquat Living Resour 16:265–270

    Article  Google Scholar 

  • Hastings MC, Popper AN, Finneran JJ, Lanford PJ (1996) Effects of low-frequency underwater sound on hair cells of the inner ear and lateral line of the teleost fish Astronotus ocellatus. J Acoust Soc Am 99:1759–1766

    Article  CAS  PubMed  Google Scholar 

  • Hawkins AD (1993) Underwater sound and fish behaviour. In: Pitcher TJ (ed) Behaviour of teleost fishes. Chapman and Hall, London, pp 129–169

    Chapter  Google Scholar 

  • Kennedy EV, Holderied MW, Mair JM, Guzman HM, Simpson SD (2010) Spatial patterns in reef-generated noise relate to habitats and communities: evidence from a Panamanian case study. J Exp Mar Biol Ecol 395:85–92

    Article  Google Scholar 

  • Ladich F (1988) Sound production by the gudgeon, Gobio gobio L., a common European freshwater fish (Cyprinidae, Teleostei). J Fish Biol 32:707–715

    Article  Google Scholar 

  • Ladich F, Bischof C, Schleinzer G, Fuchs A (1992) Intra- and interspecific differences in agonistic vocalization in croaking gouramis (genus: Trichopsis, Anabantoidei, Teleostei). Bioacoustics 4:131–141

    Article  Google Scholar 

  • Ladich F (1997) Comparative analysis of swimbladder (drumming) and pectoral (stridulation) sounds in three families of catfishes. Bioacoustics 8:185–208

    Article  Google Scholar 

  • Ladich F (2004) Sound production and acoustic communication. In: van der Emde G, Mogdans J, Kapoor BG (eds) The senses of fishes. Narosa Publishing House, New Delhi, pp 210–230

    Chapter  Google Scholar 

  • Ladich F (2007) Females whisper briefly during sex: context- and sex-specific differences in sounds made by croaking gouramis. Anim Behav 73:379–387

    Article  Google Scholar 

  • Ladich F (2008) Sound communication in fishes and the influence of ambient and anthropogenic noise. Bioacoustics 17:35–37

    Article  Google Scholar 

  • Ladich F (2010) Hearing: Vertebrates. In: Breed MD, Moore J (eds) Encyclopedia of animal behaviour, vol 2. Academic Press, Oxford, pp 54–60

    Chapter  Google Scholar 

  • Ladich F, Bass AH (2011) Sound production mechanisms and physiology. In: Farrell AP (ed) Encyclopedia of fish physiology: from genome to environment. Academic Press, San Diego, pp 321–329

    Chapter  Google Scholar 

  • Ladich F, Fine ML (2006) Sound generating mechanisms in fishes: a unique diversity in vertebrates. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes, vol 1. Science Publishers, Enfield, pp 3–43

    Google Scholar 

  • Ladich F, Myrberg AA (2006) Agonistic behaviour and acoustic communication. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes, vol 1. Science Publishers, Enfield, pp 122–148

    Google Scholar 

  • Ladich F, Popper AN (2004) Parallel evolution in fish hearing organs. In: Manley G, Popper AN, Fay RR (eds) Evolution of the Vertebrate auditory system. Springer, New York, pp 95–127

    Chapter  Google Scholar 

  • Lugli M (2010) Sounds of shallow water fishes pitch within the quiet window of the habitat ambient noise. J Comp Physiol A 196:439–451

    Article  Google Scholar 

  • Lugli M, Fine ML (2003) Acoustic communication in two freshwater gobies: ambient noise and short-range propagation in shallow streams. J Acoust Soc Am 114:512–521

    Article  CAS  PubMed  Google Scholar 

  • Lugli M, Fine ML (2007) Stream ambient noise, spectrum and propagation of sounds in the goby Padogobius martensii: sound pressure and particle velocity. J Acoust Soc Amer 122:2881–2892

    Article  Google Scholar 

  • Lugli M, Yan HY, Fine ML (2003) Acoustic communication in two freshwater gobies: the relationship between ambient noise, hearing thresholds and sound spectrum. J Comp Physiol A 189:309–320

    CAS  Google Scholar 

  • Luczkovich JJ, Dahle HJ, Hutchinson M, Jenkins T, Johnson SE et al (2000) Sounds of sex and death in the sea: bottlenose dolphins whistles suppress mating choruses of silver perch. Bioacoustics 10:323–334

    Article  Google Scholar 

  • Mann DA (2006) Propagation of fish sounds. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes, vol 1. Science Publishers, Enfield, pp 107–120

    Google Scholar 

  • Mann DA, Lobel PS (1997) Propagation of damselfish (Pomacentridae) courtship sounds. J Acoust Soc Am 101:3783–3791

    Article  Google Scholar 

  • Myrberg AA, Lugli M (2006) Reproductive behaviour and acoustical interactions. In: Ladich F, Collin SP, Moller P, Kapoor BG (eds) Communication in fishes, vol 1. Science Publishers, Enfield, pp 149–176

    Google Scholar 

  • Myrberg AA, Mohler M, Catala JD (1986) Sound production by males of a coral reef fish (Pomacentrus partitus): its significance to females. Anim Behav 34:913–923

    Article  Google Scholar 

  • Myrberg AA, Spanier E, Ha SJ (1978) Temporal patterning in acoustical communication. In: Reese ES, Lighter FJ (eds) Contrasts in behaviour. Wiley, New York, pp 137–179

    Google Scholar 

  • Popper AN (2003) Effects of anthropogenic sounds on fishes. Fish Res 28:24–31

    Article  Google Scholar 

  • Popper AN, Clarke NL (1976) The auditory system of the goldfish (Carassius auratus): effects of intense acoustic stimulation. Comp Biochem Physiol 53:11–18

    Article  CAS  Google Scholar 

  • Popper AN, Fay RR (2011) Rethinking sound detection by fishes. Hear Res 273:25–36

    Article  PubMed  Google Scholar 

  • Popper AN, Hastings MC (2009a) The effects of human-generated sound on fish. Integr Zool 4:43–52

    Article  PubMed  Google Scholar 

  • Popper AN, Hastings MC (2009b) The effects of anthropogenic sources of sound on fishes. J Fish Biol 75:455–489

    Article  CAS  PubMed  Google Scholar 

  • Popper AN, Smith ME, Cott PA, Hanna BW, MacGillivray AO, Austin ME, Mann DA (2005) Effects of exposure to seismic airgun use on hearing of three fish species. J Acoust Soc Am 117:3958–3971

    Article  PubMed  Google Scholar 

  • Purser J, Radford AN (2011) Acoustic noise induces attention shifts and reduces foraging performance in three-spined sticklebacks (Gasterosteus aculeatus). PLOS ONE 6:e17478

    Google Scholar 

  • Radford CA, Stanley JA, Simpson SD, Jeffs AG (2011) Juvenile coral reef fish use sound to locate habitats. Coral Reefs 30:295–305

    Article  Google Scholar 

  • Ramcharitar J, Popper AN (2004) Masked auditory thresholds in sciaenid fishes: a comparative study. J Acoust Soc Am 116:1687–1691

    Article  PubMed  Google Scholar 

  • Remage-Healey L, Nowacek DP, Bass AH (2006) Dolphins foraging sounds suppress calling and elevate stress hormone levels in prey species, the Gulf toadfish. J Exp Biol 209:4444–4451

    Article  CAS  PubMed  Google Scholar 

  • Rogers PH, Cox H (1988) Underwater sound as a biological stimulus. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 131–149

    Chapter  Google Scholar 

  • Samuel Y, Morreale SJ, Clark CW, Greene CH, Richmond ME (2005) Underwater, low-frequency noise in a coastal sea turtle habitat. J Acoust Soc Am 117:1465–1472

    Article  CAS  PubMed  Google Scholar 

  • Scholik AR, Yan HY (2001) Effects of underwater noise on auditory sensitivity of a cyprinid fish. Hear Res 152:17–24

    Article  CAS  PubMed  Google Scholar 

  • Scholik AR, Yan HY (2002a) The effects of noise on the auditory sensitivity of the bluegill sunfish, Lepomis macrochirus. Comp Biochem Physiol A 133:43–52

    Article  Google Scholar 

  • Scholik AR, Yan HY (2002b) Effects of boat engine noise on the auditory sensitivity of the fathead minnow, Pimephales promelas. Environ Biol Fishes 63:203–209

    Article  Google Scholar 

  • Scholz K, Ladich F (2006) Sound production, hearing and possible interception under ambient noise conditions in the topmouth minnow Pseudorasbora parva. J Fish Biol 69:892–906

    Article  Google Scholar 

  • Slabbekoorn H, Bouton N, van Opzeeland I, Coers A, ten Cate C, Popper AN (2010) A noisy spring: the impact of globally rising underwater sound levels on fish. TREE 25:419–427

    Google Scholar 

  • Smith ME, Kane AS, Popper AN (2003) Noise-induced stress response and hearing loss in goldfish. J Exp Biol 207:427–435

    Article  Google Scholar 

  • Smith M, Kane A, Popper A (2004) Acoustical stress and hearing sensitivity in fishes: does the linear threshold shift hypothesis hold water? J Exp Biol 207:3591–3602

    Article  PubMed  Google Scholar 

  • Smith ME, Schuck JB, Gilley RR, Rogers BD (2011) Structural and functional effects of acoustic exposure in goldfish: evidence of tonotopy in the teleost saccule. BMC Neurosci 12:19

    Article  PubMed Central  PubMed  Google Scholar 

  • Speares P, Holt D, Johnston C (2011) The relationship between ambient noise and dominant frequency of vocalizations in two species of darters (Percidae: Etheostoma). Environ Biol Fish 90:103–110

    Article  Google Scholar 

  • Sprague MW, Luczkovich JJ (2004) Measurements of an individual silver perch Bairdiella chrysoura sound pressure level in a field recording. J Acoust Soc Am 116:3186–3191

    Article  PubMed  Google Scholar 

  • Tonolla D, Lorang MS, Heutschi K, Tockner K (2009) A flume experiment to examine underwater sound generation by flowing water. Aquat Sci 71:449–462

    Article  Google Scholar 

  • Tolimieri N, Haine O, Jeffs A, McCauley R, Montgomery J (2004) Directional orientation of pomacentrid larvae to ambient reef sound. Coral Reefs 23:184–191

    Article  Google Scholar 

  • Urick RJ (1983) Principles of underwater sound. Chapter 7: the noise background of the sea: ambient noise. Peninsula Publishing, Los Altos, pp 202–236

    Google Scholar 

  • Vasconcelos RO, Amorim MCP, Ladich F (2007) Effects of ship noise on the detectability of communication signals in the Lusitanian toadfish. J Exp Biol 210:2104–2112

    Article  PubMed  Google Scholar 

  • Wenz GM (1962) Acoustic ambient noise in the ocean: spectra and sources. J Acoust Soc Am 34:1936–1956

    Article  Google Scholar 

  • Wysocki LE, Dittami JP, Ladich F (2006) Ship noise and cortisol secretion in European freshwater fishes. Biol Conserv 128:501–508

    Article  Google Scholar 

  • Wysocki LE, Ladich F (2005a) Hearing in fishes under noise conditions. JARO 6:28–36

    Article  PubMed Central  PubMed  Google Scholar 

  • Wysocki LE, Ladich F (2005b) Effects of noise exposure on click detection and temporal resolution ability of the goldfish auditory system. Hear Res 201:27–36

    Article  PubMed  Google Scholar 

  • Wysocki LE, Amoser S, Ladich F (2007) Diversity in ambient noise in European freshwater habitats: noise levels, spectral profiles, and impact on fishes. J Acoust Soc Am 121:2559–2566

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Thanks to Michael L. Fine and an anonymous reviewer for critically reading the manuscript. Support from the Austrian Science Fund (FWF grant 22319).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Friedrich Ladich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Ladich, F. (2013). Effects of Noise on Sound Detection and Acoustic Communication in Fishes. In: Brumm, H. (eds) Animal Communication and Noise. Animal Signals and Communication, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41494-7_4

Download citation

Publish with us

Policies and ethics