Skip to main content

Noise in Chemical Communication

  • Chapter
  • First Online:
Animal Communication and Noise

Abstract

Chemical communication is ubiquitous. It is not only employed in inter-individual communication, but also used to transfer information within individuals, from cell to cell and from one organ to another within a body with a complicated network of hormones and neurotransmitters. However, how noise affects chemical communication has been largely neglected. Here, we review possible sources of noise and the effects noise has on the behaviour of receivers. We will also discuss variation in chemical cues and signals that may provide information in some contexts, but obscure messages in others. Finally, we attempt to identify strategies that senders and receivers can follow to either reduce the occurrence or mitigate the effects of noise.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alberts A (1990) Chemical properties of femoral gland secretions in the desert iguana, Dipsosaurus dorsalis. J Chem Ecol 16:13–25

    CAS  PubMed  Google Scholar 

  • Arnold G, Quenet B, Cornuet J-M et al (1996) Kin recognition in honeybees. Nature 379:498

    CAS  Google Scholar 

  • Asahina K, Louis M, Piccinotti S, Vosshall LB (2009) A circuit supporting concentration-invariant odor perception in Drosophila. J Biol 8:9. doi:10.1186/jbiol108

    PubMed Central  PubMed  Google Scholar 

  • Baker TC (2008) Balanced olfactory antagonism as a concept for understanding evolutionary shifts in moth sex pheromone blends. J Chem Ecol 34:971–981. doi:10.1007/s10886-008-9468-5

    CAS  PubMed  Google Scholar 

  • Bargmann CI (2006) Comparative chemosensation from receptors to ecology. Nature 444:295–301. doi:10.1038/nature05402

    CAS  PubMed  Google Scholar 

  • Barja I, Silván G, Illera JC (2008) Relationships between sex and stress hormone levels in feces and marking behavior in a wild population of Iberian wolves (Canis lupus signatus). J Chem Ecol 6:697–701

    Google Scholar 

  • Barth MB, Kellner K, Heinze J (2010) The police are not the army: context-dependent aggressiveness in a clonal ant. Biol Lett 6:329–332. doi:10.1098/rsbl.2009.0849

    PubMed Central  PubMed  Google Scholar 

  • Berg BG, Almaas TJ, Bjaalie JG, Mustaparta H (1998) The macroglomerular complex of the antennal lobe in the tobacco budworm moth Heliothis virescens: specified subdivision in four compartments according to information about biologically significant compounds. J Comp Physiol A 183:669–682. doi:10.1007/s003590050290

    Google Scholar 

  • Berglund B, Berglund U, Engen T, Lindvall T (1971) The effect of adaptation on odor detection. Percept Psychophys 9:435–438

    Google Scholar 

  • Bialek W (1987) Physical limits to sensation and perception. Annu Rev Biophys Biophys Chem 16:455–478. doi:10.1146/annurev.bb.16.060187.002323

    CAS  PubMed  Google Scholar 

  • Boeckh J, Selsam P (1984) Quantitative investigation of the odour specificity of central olfactory neurones in the American cockroach. Chem Senses 9:369–380

    Google Scholar 

  • Boeckh J, Tolbert LP (1993) Synaptic organization and development of the antennal lobe in insects. Microsc Res Tech 24:260–280. doi:10.1002/jemt.1070240305

    CAS  PubMed  Google Scholar 

  • Bonavita-Cougourdan A, Clement J-L, Lange C (1993) Functional subcaste discrimination (foragers and brood-tenders) in the ant Camponotus vagus Csop: polymorphism of cuticular hydrocarbons. J Chem Ecol 19:1461–1477

    CAS  PubMed  Google Scholar 

  • Boomsma JJ, Nielsen J, Sundström L et al (2003) Informational constraints on optimal sex allocation in ants. Proc Natl Acad Sci USA 100:8799–8804. doi:10.1073/pnas.1430283100

    CAS  PubMed Central  PubMed  Google Scholar 

  • Borroni PF, Atema J (1988) Adaptation in chemoreceptor cells. I. Self-adapting backgrounds determine threshold and cause parallel shift of response function. J Comp Physiol A 164:67–74

    CAS  PubMed  Google Scholar 

  • Brodmann J, Twele R, Francke W et al (2009) Orchid mimics honey bee alarm pheromone in order to attract hornets for pollination. Curr Biol 19:1368–1372

    CAS  PubMed  Google Scholar 

  • Brown RE (1985) The rodents II: suborder Myomorpha. In: Brown RE, Macdonald DW (ed) Social odours in mammals. Oxford University Press, Oxford, pp 345–457

    Google Scholar 

  • de Bruyne M, Baker TC (2008) Odor detection in insects: volatile codes. J Chem Ecol 34:882–897. doi:10.1007/s10886-008-9485-4

    CAS  PubMed  Google Scholar 

  • Candolin U (2003) The use of multiple cues in mate choice. Biol Rev 78:575–595

    PubMed  Google Scholar 

  • CardĂ© RT, Haynes KF (2004) Structure of the pheromone communication channel in moths. In: CardĂ© R, Millar J (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 283–332

    Google Scholar 

  • Charlton RE, Webster FX, Zhang A et al (1993) Sex pheromone for the brown banded cockroach is an unusual dialkyl-substituted alpha-pyrone. Proc Natl Acad Sci USA 90:10202–10205

    CAS  PubMed Central  PubMed  Google Scholar 

  • Chittka L, Niven J (2009) Are bigger brains better? Curr Biol 19:R995–R1008. doi:10.1016/j.cub.2009.08.023

    CAS  PubMed  Google Scholar 

  • Cleland TA, Johnson BA, Leon M, Linster C (2007) Relational representation in the olfactory system. Proc Natl Acad Sci USA 104:1953–1958

    CAS  PubMed Central  PubMed  Google Scholar 

  • Cleland TA, Narla VAA, Boudadi K (2009) Multiple learning parameters differentially regulate olfactory generalization. Behav Neurosci 123:26. doi:10.1037/a0013991.Multiple

    PubMed Central  PubMed  Google Scholar 

  • Conner W, Weller SJ (2004) A quest for alkaloids: the curious relationship of tiger moths and plants containing pyrrolizidine alkaloids. In: CardĂ© RT, Millar JG (eds) Advances in insect chemical ecology. Cambridge University Press, Cambridge, pp 248–282

    Google Scholar 

  • Dani FR, Foster KR, Zacchi F et al (2004) Can cuticular lipids provide sufficient information for within-colony nepotism in wasps? Proc R Soc Lond B 271:745–753. doi:10.1098/rspb.2003.2646

    CAS  Google Scholar 

  • Dani FR, Jones GR, Corsi S et al (2005) Nestmate recognition cues in the honey bee: differential importance of cuticular alkanes and alkenes. Chem Senses 30:477–489. doi:10.1093/chemse/bji040

    CAS  PubMed  Google Scholar 

  • Dicke M, Agrawal AA, Bruin J (2003) Plants talk, but are they deaf? Trends Plant Sci 8:403–405

    CAS  PubMed  Google Scholar 

  • Dickson BJ (2008) Wired for sex: the neurobiology of Drosophila mating decisions. Science 322:904–909

    CAS  PubMed  Google Scholar 

  • Domingue MJ, Haynes KF, Todd JL, Baker TC (2009) Altered olfactory receptor neuron responsiveness is correlated with a shift in behavioral response in an evolved colony of the cabbage looper moth, Trichoplusia ni. J Chem Ecol 35:405–415. doi:10.1007/s10886-009-9621-9

    CAS  PubMed  Google Scholar 

  • Dybdahl MF, Storfer A (2003) Parasite local adaptation: red queen versus suicide king. Trend Ecol Evol 18:523–530

    Google Scholar 

  • d’Ettorre P, Heinze J (2005) Individual recognition in ant queens. Curr Biol 15:1–2. doi:10.1016/j.cub.2005.10.067

    Google Scholar 

  • d’Ettorre P, Moore AJ (2008) Chemical communication and the coordination of social interactions in insects. In: d’Ettorre P, Hughes DP (ed) Sociobiology of communication. Oxford Scholarship Online Monographs, pp 81–97

    Google Scholar 

  • Eizaguirre M, LĂłpez C, Sans A et al (2009) Response of Mythimna unipuncta males to components of the Sesamia nonagrioides pheromone. J Chem Ecol 35:779–784

    CAS  PubMed  Google Scholar 

  • Frisch K von (1915) Der Farbensinn und Formensinn der Biene. Zool Jb Physiol 35:1–182

    Google Scholar 

  • Fouks B, d’Ettorre P, Nehring V (2011) Brood adoption in the leaf-cutting ant Acromyrmex echinatior: adaptation or recognition noise? Insectes Soc 58:479–485. doi: 10.1007/s00040-011-0167-9

    Google Scholar 

  • Gemeno C, Schal C (2004) Sex pheromones of cockroaches. In: CardĂ© R, Millar J (eds) Advances in insect chemical ecology. Cambridge University Press, New York, pp 179–247

    Google Scholar 

  • Gosling LM (1981) Demarkation in a gerenuk territory: an economic approach. Z Tierpsychol 56:305–322

    Google Scholar 

  • Greene MJ, Gordon DM (2003) Social insects: cuticular hydrocarbons inform task decisions. Nature 423:32

    CAS  PubMed  Google Scholar 

  • Greenspan RJ, Ferveur J-F (2000) Courtship in Drosophila. Annu Rev Genet 34:205–232

    CAS  PubMed  Google Scholar 

  • Hallem EA, Carlson JR (2006) Coding of odors by a receptor repertoire. Cell 125:143–160

    Google Scholar 

  • Hansson BS, Baker TC (1991) Differential adaptation rates in a male moth’s sex pheromone receptor neurons. Naturwissenschaften 78:517–520

    CAS  Google Scholar 

  • Harris MO, Foster SP (1994) Behavior and integration. In: Carde RT, Bell WJ (ed) Chemical ecology of insects 2. Chapman and Hall, New York, pp 3–46

    Google Scholar 

  • Havlicek J, Roberts SC (2009) MHC-correlated mate choice in humans: a review. Psychoneuroendocrinology 34:497–512

    CAS  PubMed  Google Scholar 

  • Haynes KF, Hunt RE (1990) A mutation in pheromonal communication system of cabbage looper moth, Trichoplusia ni. J Chem Ecol 16:1249–1257

    Google Scholar 

  • Haynes KF, Gemeno C, Yeargan KV et al (2002) Aggressive chemical mimicry of moth pheromones by a bolas spider: how does this specialist predator attract more than one species of prey? Chemoecology 12:99–105

    CAS  Google Scholar 

  • Hebets EA, Papaj DR (2005) Complex signal function: developing a framework of testable hypotheses. Behav Ecol Sociobiol 57:197–214

    Google Scholar 

  • Helanterä H, Ratnieks FLW (2008) Two independent mechanisms of egg recognition in worker Formica fusca ants. Behav Ecol Sociobiol 63:573–580. doi:10.1007/s00265-008-0692-3

    Google Scholar 

  • Helsper JPFG, Davies JA, Bouwmeester HJ et al. (1998) Circadian rhythmicity in emission of volatile compounds by flowers of Rosa hybrida L. cv. Honesty. Planta 207:88–95. doi: 10.1007/s004250050459

    Google Scholar 

  • Holman L, Dreier S, d’Ettorre P (2010) Selfish strategies and honest signalling: reproductive conflicts in ant queen associations. Proc R Soc Lond B 277:2007–2015. doi: 10.1098/rspb.2009.2311

  • Hurst J, Beynon R (2004) Scent wars: the chemobiology of competitive signalling in mice. BioEssays 26:1288–1298

    CAS  PubMed  Google Scholar 

  • Ibba I, Angioy AM, Hansson BS, Dekker T (2010) Macroglomeruli for fruit odors change blend preference in Drosophila. Naturwissenschaften 97:1059–1066. doi:10.1007/s00114-010-0727-2

    CAS  PubMed  Google Scholar 

  • Johnson RP (1973) Scent marking in mammals. Anim Behav 21:521–535

    Google Scholar 

  • Johnston RE (2008) Individual odors and social communication: individual recognition, kin recognition, and scent over-marking. In: Brockmann H, Roper T, Naguib M et al. (eds) Advances in the study of behavior. Academic Press, New York, pp 439–505

    Google Scholar 

  • Karlson P, LĂĽscher M (1959) “Pheromones”, a new term for a class of biologically active substances. Nature 183:55–56. doi:10.1038/183055a0

    CAS  PubMed  Google Scholar 

  • Kaupp UB (2010) Olfactory signalling in vertebrates and insects: differences and commonalities. Nat Rev Neurosci 11:188–200

    CAS  PubMed  Google Scholar 

  • Kawecki TJ, Ebert D (2004) Conceptual issues in local adaptation. Ecol Lett 7:1225–1241

    Google Scholar 

  • Kay LM, Stopfer M (2006) Information processing in the olfactory systems of insects and vertebrates. Semin Cell Dev Biol 17:433–442. doi:10.1016/j.semcdb.2006.04.012

    PubMed  Google Scholar 

  • Kelly DR (1996) When is a butterfly like an elephant? Chem Biol 3:595–602

    CAS  PubMed  Google Scholar 

  • Kleene SJ (1997) High-gain, low-noise amplification in olfactory transduction. Biophys J 73:1110–1117

    CAS  PubMed Central  PubMed  Google Scholar 

  • Kleineidam CJ, Obermayer M, Halbich W, Rössler W (2005) A macroglomerulus in the antennal lobe of leaf-cutting ant workers and its possible functional significance. Chem Senses 30:383–392. doi:10.1093/chemse/bji033

    CAS  PubMed  Google Scholar 

  • Lacaille F, Hiroi M, Twele R et al (2007) An inhibitory sex pheromone tastes bitter for Drosophila males. Plos One 2:e661. doi:10.1371/journal.pone.0000661

    PubMed Central  PubMed  Google Scholar 

  • Lanier GN, Classon ALF, Piston JJ et al (1980) Ips pini: the basis for interpopulational differences in pheromone biology. J Chem Ecol 6:677–687

    Google Scholar 

  • Lassance J-M (2010) Journey in the Ostrinia world: from pest to model in chemical ecology. J Chem Ecol 36:1155–1169. doi:10.1007/s10886-010-9856-5

    CAS  PubMed  Google Scholar 

  • Lassance J-M, Groot AT, LiĂ©nard MA et al. (2010) Allelic variation in a fatty-acyl reductase gene causes divergence in moth sex pheromones. Nature 466:486–489. doi: 10.1038/nature09058

    Google Scholar 

  • Lenoir A, d’Ettorre P, Errard C, Hefetz A (2001) Chemical ecology and social parasitism in ants. Ann Rev Entomol 46:573–599

    Google Scholar 

  • Lenoir A, Fresneau D, Errard C, Hefetz A (1999) Individuality and colonial identity in ants. In: Detrain C, Deneubourg JL, Pasteels JM (ed) Information processing in social insects. Birkhäuser Verlag, Basel, pp 219–237

    Google Scholar 

  • Leon M, Johnson BA (2003) Olfactory coding in the mammalian olfactory bulb. Brain Res Rev 42:23–32. doi: 10.1016/S0165-0173(03)00142-5

    Google Scholar 

  • Liang D, Blomquist GJ, Silverman J (2001) Hydrocarbon-released nestmate aggression in the Argentine ant, Linepithema humile, following encounters with insect prey. Comp Biochem Physiol B 129:871–882

    CAS  PubMed  Google Scholar 

  • Linn CE, Campbell MG, Roelofs WL (1987) Pheromone components and active spaces: what do moths smell and where do they smell it? Science 237:650–652

    CAS  PubMed  Google Scholar 

  • Linn CEJ, Bjostad LB, Du JW, Roelofs WL (1984) Redundancy in a chemical signal; behavioral responses of male Trichoplusia ni to a 6-component sex pheromone blend. J Chem Ecol 10:1635–1658

    CAS  PubMed  Google Scholar 

  • Linster C, Johnson Morse et al (2001) Perceptual correlates of neural representations evoked by odorant enantiomers. J Neurosci 21:9837–9843

    CAS  PubMed  Google Scholar 

  • Linster C, Johnson Morse et al (2002) Spontaneous versus reinforced olfactory discriminations. J Neurosci 22:6842–6845

    CAS  PubMed  Google Scholar 

  • Loftfield RB, Vanderjagt D (1963) The frequency of errors in protein biosynthesis. Biochem J 89:82–92

    CAS  PubMed Central  PubMed  Google Scholar 

  • Lowe G, Gold GH (1995) Olfactory transduction is intrinsically noisy. Proc Natl Acad Sci USA 92:7864–7868

    CAS  PubMed Central  PubMed  Google Scholar 

  • Löfstedt C (1990) Population variation and genetic control of pheromone communication systems in moths. Entomol Exp Appl 54:199–218

    Google Scholar 

  • Löfstedt C, Herrebout WM, Menken SBJ (1991) Sex pheromones and their potential role in the evolution of reproductive isolation in small ermine moths (Yponomeutidae). Chemoecology 2:20–28. doi:10.1007/BF01240662

    Google Scholar 

  • Macdonald DW (1985) The carnivores: order Carnivora. In: Brown RE, Macdonald DW (ed) Social odours in mammals. Oxford University Press, Oxford, pp 619–722

    Google Scholar 

  • Martin SJ, Drijfhout FP (2009) A review of ant cuticular hydrocarbons. J Chem Ecol 35:1151–1161. doi:10.1007/s10886-009-9695-4

    CAS  PubMed  Google Scholar 

  • Martin SJ, Helanterä H, Drijfhout FP (2011) Is parasite pressure a driver of chemical cue diversity in ants? Proc R Soc Lond B 278:496–503. doi:10.1098/rspb.2010.1047

    Google Scholar 

  • Martin SJ, Helanterä H, Kiss K et al (2009) Polygyny reduces rather than increases nestmate discrimination cue diversity in Formica exsecta ants. Insectes Soc 56:375–383. doi:10.1007/s00040-009-0035-z

    Google Scholar 

  • Maynard Smith J, Harper D (2003) Animal signals. Oxford University Press, Oxford

    Google Scholar 

  • Miklas N, Renou M, Malosse I, Malosse C (2000) Repeatability of pheromone blend composition in individual males of the southern green stink bug, Nezara viridula. J Chem Ecol 26:2473–2485

    CAS  Google Scholar 

  • Miller JR, McGhee PS, Siegert PY et al (2010) General principles of attraction and competitive attraction as revealed by large-cage studies of moths responding to sex pheromone. Proc Natl Acad Sci USA 107:22–27. doi:10.1073/pnas.0908453107

    CAS  PubMed Central  PubMed  Google Scholar 

  • Minks AK, CardĂ© RT (1988) Disruption of pheromone communication in moths—is the natural blend really most efficacious. Entomol Exp Appl 49:25–36

    Google Scholar 

  • Monnin T, Peeters C (1999) Dominance hierarchy and reproductive conflicts among subordinates in a monogynous queenless ant. Behav Ecol 10:323–332. doi:10.1093/beheco/10.3.323

    Google Scholar 

  • Moore D, Liebig J (2010) Mixed messages: fertility signaling interferes with nestmate recognition in the monogynous ant Camponotus floridanus. Behav Ecol Sociobiol 64:1011–1018. doi:10.1007/s00265-010-0916-1

    Google Scholar 

  • Murlis J, Elkinton JS, CardĂ© RT (1992) Odor plumes and how insects use them. Annu Rev Entomol 37:505–532. doi:10.1146/annurev.ento.37.1.505

    Google Scholar 

  • Mustaparta H (1997) Olfactory coding mechanisms for pheromone and interspecific signal information in related moth species. In: Carde RT, Minks AK (eds) Insect Pheromone Research: New Directions, Springer

    Google Scholar 

  • Møller AP, Pomiankowski A (1993) Why have birds got multiple sexual ornaments? Behav Ecol Sociobiol 32:167–176. doi:10.1007/BF00173774

    Google Scholar 

  • MĂĽller-Schwarze D (2006) Chemical ecology of vertebrates. Cambridge University Press, Cambridge

    Google Scholar 

  • Nehring V, Evison SEF, Santorelli LA, d’Ettorre P, Hughes WOH (2011) Kin-informative recognition cues in ants. Proc R Soc Lond B 278:1942–1948. doi:10.1098/rspb.2010.2295

    Google Scholar 

  • Novotny M, Harvey S, Jemiolo B, Alberts J (1985) Synthetic pheromones that promote inter-male aggression in mice. Proc Natl Acad Sci USA 82:2059–2061

    CAS  PubMed Central  PubMed  Google Scholar 

  • Olsson SB, Kesevan S, Groot AT et al (2010) Ostrinia revisited: evidence for sex linkage in European Corn Borer Ostrinia nubilalis (Hubner) pheromone reception. BMC Evol Biol 10:285. doi:10.1186/1471-2148-10-285

    PubMed Central  PubMed  Google Scholar 

  • Peeters C, Monnin T, Malosse C (1999) Cuticular hydrocarbons correlated with reproductive status in a queenless ant. Proc R Soc Lond B 266:1323–1327. doi:10.1098/rspb.1999.0782

    CAS  Google Scholar 

  • Phelan MM, Mclean L, Beynon RJ, Hurst JL, Lian L (2012) Structural insights into the specificity of darcin, an atypical major urinary protein. PDB 2L9C, doi:10.2210/pdb2l9c/pdb

  • Penn DJ (2002) The scent of genetic compatibility: sexual selection and the major histocompatibility complex. Ethology 108:1–21

    Google Scholar 

  • Porter RH, Winberg J (1999) Unique salience of maternal breast odors for newborn infants. Neurosci Biobehav Rev 23:439–449

    CAS  PubMed  Google Scholar 

  • Ratnieks FLW (1988) Reproductive harmony via mutual policing by workers in eusocial Hymenoptera. Am Nat 132:217–236

    Google Scholar 

  • Roberts SA, Simpson DM, Armstrong SD, Davidson AJ, Robertson DH, McLean L, Beynon RJ, Hurst JL (2010) Darcin: a male pheromone that stimulates female memory and sexual attraction to an individual male’s odour. BMC Biol 8:75

    PubMed Central  PubMed  Google Scholar 

  • Roelofs WL (1995) Chemistry of sex attraction. Proc Natl Acad Sci USA 92:44–49

    CAS  PubMed Central  PubMed  Google Scholar 

  • Ryne C, Svensson GP, Löfstedt C (2001) Mating disruption of Plodia interpunctella in small-scale plots: effects of pheromone blend, emission rates, and population density. J Chem Ecol 27:2109–2124

    CAS  PubMed  Google Scholar 

  • Schiestl FP (2005) On the success of a swindle: pollination by deception in orchids. Naturwissenschaften 92:255–264

    CAS  PubMed  Google Scholar 

  • Schiestl FP, Peakall R, Mant JG et al (2003) The chemistry of sexual deception in an orchid-wasp pollination system. Science 302:437–438. doi:10.1126/science.1087835

    CAS  PubMed  Google Scholar 

  • Slessor KN, Winston ML, Le Conte Y (2005) Pheromone communication in the honeybee (Apis mellifera L). J Chem Ecol 31:2731–2745

    CAS  PubMed  Google Scholar 

  • Smadja C, Butlin RK (2009) On the scent of speciation: the chemosensory system and its role in premating isolation. Heredity 102:77–97. doi:10.1038/hdy.2008.55

    CAS  PubMed  Google Scholar 

  • Smith AA, Hölldobler B, Liebig J (2009) Cuticular hydrocarbons reliably identify cheaters and allow enforcement of altruism in a social insect. Curr Biol 19:78–81. doi:10.1016/j.cub.2008.11.059

    CAS  PubMed  Google Scholar 

  • Sorensen PW, Scott AP, Kihslinger RL (2000) How common hormonal metabolites function as relatively specific pheromonal signals in the goldfish. In: Norberg B, Kjesbu OS, Taranger GL et al. (eds) Proceedings of the sixth international symposium on the reproductive physiology of fish. Institute of Marine Research and University of Bergen, Bergen, pp 125–128

    Google Scholar 

  • Soroker V, Vienne C, Hefetz A (1995) Hydrocarbon dynamics within and between nestmates in Cataglyphis niger (Hymenoptera: Formicidae). J Chem Ecol 21:365–378

    CAS  PubMed  Google Scholar 

  • Spors H, Wachowiak M, Cohen LB, Friedrich RW (2006) Temporal dynamics and latency patterns of receptor neuron input to the olfactory bulb. J Neurosci 26:1247–1259. doi:10.1523/JNEUROSCI.3100-05.2006

    CAS  PubMed  Google Scholar 

  • Steiger S, Schmitt T, Schaefer HM (2011) The origin and dynamic evolution of chemical information transfer. Proc R Soc Lond B 278:970–979. doi:10.1098/rspb.2010.2285

    Google Scholar 

  • Stensmyr MC, Urru I, Collu I et al (2002) Pollination: rotting smell of dead-horse arum florets. Nature 420:625–626

    CAS  PubMed  Google Scholar 

  • Stowe MK, Tumlinson JH, Heath RR (1987) Chemical mimicry: bolas spiders emit components of moth prey species sex pheromones. Science (80-) 236:964–967

    Google Scholar 

  • Tanaka N, Awasaki T, Shimada T (2004) Integration of chemosensory pathways in the Drosophila second-order olfactory centers. Curr Biol 14:449–457. doi:10.1016/j

    CAS  PubMed  Google Scholar 

  • Todd JL, Baker TC (1999) Function of peripheral olfactory organs. In: Hansson BS (ed) Insect olfaction. Springer, Berlin, pp 67–96

    Google Scholar 

  • Touhara K (2008) Sexual communication via peptide and protein pheromones. Curr Opin Pharmacol 8:759–764

    CAS  PubMed  Google Scholar 

  • Toyoda F, Yamamoto K, Iwata T et al (2004) Peptide pheromones in newts. Peptides 25:1531–1536

    CAS  PubMed  Google Scholar 

  • van Zweden JS, FĂĽrst MA, Heinze J, D’Ettorre P (2007) Specialization in policing behaviour among workers of the ant Pachycondyla inversa. Proc R Soc Lond B 274:1421–1428. doi:10.1098/rspb.2007.0113

    Google Scholar 

  • van Zweden JS, Dreier S, d’Ettorre P (2009) Disentangling environmental and heritable nestmate recognition cues in a carpenter ant. J Insect Physiol 55:159–164. doi: DOI: 10.1016/j.jinsphys.2008.11.001

    Google Scholar 

  • van Zweden JS, d’Ettorre P (2010) Nestmate recognition in social insects and the role of hydrocarbons. In: Blomquist GJ, Bagneres AG (eds) Insect hydrocarbons: biology, biochemistry, and chemical ecology. Cambridge University Press, Cambridge, pp 222–243

    Google Scholar 

  • van Zweden JS, Brask JB, Christensen JH et al (2010) Blending of heritable recognition cues among ant nestmates creates distinct colony gestalt odours but prevents within-colony nepotism. J Evol Biol 23:1498–1508. doi:10.1111/j.1420-9101.2010.02020.x

    PubMed  Google Scholar 

  • Vickers NJ, Baker TC (1994) Reiterative responses to single strands of odor promote sustained upwind flight and odor source location by moths. Proc Natl Acad Sci USA 91:5756–5760

    CAS  PubMed Central  PubMed  Google Scholar 

  • Wark B, Lundstrom BN, Fairhall A (2007) Sensory adaptation. Curr Opin Neurobiol 17:423–429

    CAS  PubMed Central  PubMed  Google Scholar 

  • Waters CM, Bassler BL (2005) Quorum sensing: cell-to-cell communication in bacteria. Annu Rev Cell Dev Biol 21:319–46. doi: 10.1146/annurev.cellbio.21.012704.131001

    Google Scholar 

  • Webster DR, Weissburg MJ (2009) The hydrodynamics of chemical cues among aquatic organisms. Annu Rev Fluid Mech 41:73–90

    Google Scholar 

  • Witzgall P, Frerot B (1989) Pheromone emission by individual females of carnation tortrix, Cacoecimorpha pronubana. J Chem Ecol 15:707–717

    CAS  PubMed  Google Scholar 

  • Wright GA, Kottcamp SM, Thomson MGA (2008) Generalization mediates sensitivity to complex odor features in the honeybee. Plos One 3:e1704

    PubMed Central  PubMed  Google Scholar 

  • Wyatt TD (2009) Fifty years of pheromones. Nature 457:262–263

    CAS  PubMed  Google Scholar 

  • Wyatt TD (2010) Pheromones and signature mixtures: defining species-wide signals and variable cues for identity in both invertebrates and vertebrates. J Comp Physiol A 196:685–700. doi:10.1007/s00359-010-0564-y

    CAS  Google Scholar 

  • Wyatt TD (2011) Pheromones and behavior. In: Breithaupt T, Thiel M (eds) Chemical communication in crustaceans. Springer, New York, pp 23–38

    Google Scholar 

  • Wyatt TD (2014) Pheromones and animal behavior: chemical signals and signature mixtures, 2nd edn. Cambridge University Press, Cambridge

    Google Scholar 

  • Zaher HS, Green R (2009) Quality control by the ribosome following peptide bond formation. Nature 457:161–166. doi:10.1038/nature07582

    CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Marc Weissburg for the photograph of the underwater odour plume visualised with dye and Rob Beynon for the Darcin ribbon graphic. We also thank Jan Benda, Henrik Brumm and an anonymous referee for their helpful comments on drafts of this chapter.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Volker Nehring .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Nehring, V., Wyatt, T.D., d’Ettorre, P. (2013). Noise in Chemical Communication. In: Brumm, H. (eds) Animal Communication and Noise. Animal Signals and Communication, vol 2. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41494-7_13

Download citation

Publish with us

Policies and ethics