Skip to main content
  • 1297 Accesses

Abstract

This chapter presents the concept of Continuous Search, the objective of which is to allow any user to eventually get their constraint solver to achieve top performance on their problems. Continuous Search comes in two modes: the functioning mode solves the user’s problem instances using the current heuristics model; the exploration mode reuses these instances to train and improve the heuristics model through machine learning during the computer idle time. Contrasting with previous approaches, Continuous Search thus does not require that the representative instances needed to train a good heuristics model be available beforehand. It achieves lifelong learning, gradually becoming an expert on the user’s problem instance distribution. Experimental validation suggests that Continuous Search can design efficient mixed strategies after considering a moderate number of problem instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Out of eight categories, detailed in http://www.gecode.org/doc-latest/reference/classGecode_1_1PropCost.html.

  2. 2.

    The rationale for this decision is that the margin, i.e., the distance of the example w.r.t. the separating hyperplane, is interpreted as the confidence of the prediction [Vap95].

  3. 3.

    http://www.g12.cs.mu.oz.au/minizinc/download.html.

  4. 4.

    http://www.cril.univ-artois.fr/~lecoutre/benchmarks.html.

  5. 5.

    http://www.cs.st-andrews.ac.uk/~andrea/tailor/.

  6. 6.

    http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

References

  1. A. Arbelaez, Y. Hamadi, M. Sebag, Online heuristic selection in constraint programming, in International Symposium on Combinatorial Search, Lake Arrowhead, USA, 2009

    Google Scholar 

  2. A. Arbelaez, Y. Hamadi, M. Sebag, Continuous search in constraint programming, in 22nd IEEE International Conference on Tools with Artificial Intelligence, ICTAI 2010 (IEEE Comput. Soc., Los Alamitos, 2010), pp. 53–60

    Chapter  Google Scholar 

  3. R. Akbani, S. Kwek, N. Japkowicz, Applying support vector machines to imbalanced datasets, in ECML, ed. by J.F. Boulicaut, F. Esposito, F. Giannotti, D. Pedreschi. Lecture Notes in Computer Science, vol. 3201 (Springer, Berlin, 2004), pp. 39–50

    Google Scholar 

  4. C. Ansótegui, M. Sellmann, K. Tierney, A gender-based genetic algorithm for the automatic configuration of algorithms, in 15th International Conference on Principles and Practice of Constraint Programming, Lisbon, Portugal, ed. by I.P. Gent. LNCS, vol. 5732 (Springer, Berlin, 2009), pp. 142–157

    Google Scholar 

  5. F. Boussemart, F. Hemery, C. Lecoutre, L. Sais, Boosting systematic search by weighting constraints, in Proceedings of the 16th European Conference on Artificial Intelligence, Valencia, Spain, ed. by R.L. de Mántaras, L. Saitta (IOS Press, Amsterdam, 2004), pp. 146–150

    Google Scholar 

  6. T. Carchrae, J.C. Beck, Applying machine learning to low-knowledge control of optimization algorithms. Comput. Intell. 21(4), 372–387 (2005)

    Article  MathSciNet  Google Scholar 

  7. M. Correira, P. Barahona, On the efficiency of impact based heuristics, in 14th International Conference on Principles and Practice of Constraint Programming, Sydney, Australia, ed. by P.J. Stuckey. LNCS, vol. 5202 (Springer, Berlin, 2008), pp. 608–612

    Chapter  Google Scholar 

  8. N. Christianini, J. Shawe-Taylor, An Introduction to Support Vector Machines and Other Kernel-Based Learning Methods (Cambridge University Press, Cambridge, 2000)

    Book  Google Scholar 

  9. S. Epstein, E. Freuder, R. Wallace, A. Morozov, B. Samuels, The adaptive constraint engine, in Principles and Practice of Constraint Programming—CP 2002, 8th International Conference. Lecture Notes in Computer Science, vol. 2470 (Springer, Berlin, 2002), pp. 525–542

    Chapter  Google Scholar 

  10. Gecode Team, Gecode: GenE. Constraint development environment (2006). Available from http://www.gecode.org

  11. S. Gelly, D. Silver, Combining online and offline knowledge in UCT, in Proceedings of the Twenty-Fourth International Conference on Machine Learning, Corvallis, Oregon, USA, ed. by Z. Ghahramani. ACM International Conference Proceeding Series, vol. 227 (ACM, New York, 2007), pp. 273–280

    Google Scholar 

  12. C. Gomes, B. Selman, H. Kautz, Boosting combinatorial search through randomization, in AAAI/IAAI (1998), pp. 431–437

    Google Scholar 

  13. R.M. Haralick, G.L. Elliott, Increasing tree search efficiency for constraint satisfaction problems, in IJCAI, San Francisco, CA, USA (1979), pp. 356–364

    Google Scholar 

  14. F. Hutter, Y. Hamadi, Parameter adjustment based on performance prediction: towards an instance-aware problem solver. Technical Report MSR-TR-2005-125, Microsoft Research, Cambridge, UK (2005)

    Google Scholar 

  15. F. Hutter, Y. Hamadi, H. Hoos, K. Leyton-Brown, Performance prediction and automated tuning of randomized and parametric algorithms, in CP, ed. by F. Benhamou. Lecture Notes in Computer Science, vol. 4204 (Springer, Berlin, 2006), pp. 213–228

    Google Scholar 

  16. F. Hutter, H. Hoos, K. Leyton-Brown, T. Stützle, ParamILS: an automatic algorithm configuration framework. J. Artif. Intell. Res. 36, 267–306 (2009)

    MATH  Google Scholar 

  17. S. Haim, T. Walsh, Restart strategy selection using machine learning techniques, in 12th International Conference on Theory and Applications of Satisfiability Testing, Swansea, UK, ed. by O. Kullmann. LNCS, vol. 5584 (Springer, Berlin, 2009), pp. 312–325

    Google Scholar 

  18. H.A. Kautz, E. Horvitz, Y. Ruan, C.P. Gomes, B. Selman, Dynamic restart policies, in AAAI/IAAI (2002), pp. 674–681

    Google Scholar 

  19. H. Larochelle, Y. Bengio, Classification using discriminative restricted Boltzmann machines, in Proceedings of the Twenty-Fifth International Conference on Machine Learning, Helsinki, Finland, ed. by W.W. Cohen, A. McCallum, S.T. Roweis. ACM International Conference Proceeding Series, vol. 307 (ACM, New York, 2008), pp. 536–543

    Google Scholar 

  20. E. O’Mahony, E. Hebrard, A. Holland, C. Nugent, B. O’Sullivan, Using case-based reasoning in an algorithm portfolio for constraint solving, in Proceedings of the 19th Irish Conference on Artificial Intelligence and Cognitive Science (2008)

    Google Scholar 

  21. I. Rish, M. Brodie, S. Ma et al., Adaptive diagnosis in distributed systems. IEEE Trans. Neural Netw. 16, 1088–1109 (2005)

    Article  Google Scholar 

  22. P. Refalo, Impact-based search strategies for constraint programming, in 10th International Conference on Principles and Practice of Constraint Programming, Toronto, Canada, ed. by M. Wallace. LNCS, vol. 2004 (Springer, Berlin, 2004), pp. 557–571

    Google Scholar 

  23. M. Streeter, D. Golovin, S.F. Smith, Combining multiple heuristics online, in Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, Vancouver, British Columbia, Canada (AAAI Press, Menlo Park 2007), pp. 1197–1203

    Google Scholar 

  24. H. Samulowitz, R. Memisevic, Learning to solve QBF, in Proceedings of the Twenty-Second AAAI Conference on Artificial Intelligence, Vancouver, British Columbia (AAAI Press, Menlo Park 2007)

    Google Scholar 

  25. K. Smith-Miles, Cross-disciplinary perspectives on meta-learning for algorithm selection. ACM Comput. Surv. 41(1), 1–25 (2008)

    Article  Google Scholar 

  26. V. Vapnik, The Nature of Statistical Learning (Springer, New York, 1995)

    Book  MATH  Google Scholar 

  27. I.H. Witten, E. Frank, Data Mining—Practical Machine Learning Tools and Techniques (Elsevier, Amsterdam, 2005)

    MATH  Google Scholar 

  28. H. Wu, P. van Beek, Portfolios with deadlines for backtracking search. Int. J. Artif. Intell. Tools 17(5), 835–856 (2008)

    Article  Google Scholar 

  29. L. Xu, F. Hutter, H. Hoos, K. Leyton-Brown, SATzilla-07: the design and analysis of an algorithm portfolio for SAT, in Principles and Practice of Constraint Programming—CP 2007 (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hamadi, Y. (2013). Continuous Search. In: Combinatorial Search: From Algorithms to Systems. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41482-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41482-4_6

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41481-7

  • Online ISBN: 978-3-642-41482-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics