Skip to main content

Characteristics of the Sub-equatorial North-Eastern Pacific Ocean’s Abyss, with a Particular Reference to the Clarion-Clipperton Fracture Zone

  • Chapter
  • First Online:
Book cover Meiobenthos in the Sub-equatorial Pacific Abyss

Part of the book series: SpringerBriefs in Earth System Sciences ((BRIEFSEARTHSYST))

Abstract

The deep seafloor, i.e. seabed areas at depths exceeding 800–1,300 m, cover about 88 % of the world ocean’s bottom. The most extensive areas represent the 3,000–6,000 depth range and include abyssal plains (depths > 4,000 m) the largest of which is the abyssal plain of the Pacific Ocean. The water column overlying it consists of a number of layers differing in their major characteristics. The most characteristic layers include that encompassing the oxygen minimum zone (OMZ, 100–1,000 m depth range in the Pacific) and the near-bottom layer, directly impinging on the seafloor. Once considered extremely stable, the near-bottom layer is now known to be prone to hydrodynamic effects such as tides and currents. The latter are generally weak, but periods of intensified current activity are not infrequent. The water column effects influencing the abyssal seafloor include also the transmission of the wind-generated surface physical energy down to the bottom (the “benthic storms”) on the one hand and sedimentation of surface-produced organic matter on the other. Both the benthic storms and organic matter deposition are known to be periodically, or episodically, intensified, thus contributing to natural environmental variability in the abyss. The Pacific abyssal plain sedimentary cover is mostly biogenic in origin. A characteristic part of the Pacific abyss is a huge (about 2 million km2) polymetallic nodule field within the NE sub-equatorial seafloor area experiencing low sedimentation rates and constrained by the Clarion and Clipperton fractures (the Clarion-Clipperton Fracture Zone, CCFZ). CCFZ extends sub-latitudinally along about 4,200 km, its surface inclining slightly westwards with depths in the east-west direction from about 4,000 to about 5,400 m. The seafloor, although generally flat, does show (particularly in the eastern part) distinct topographic features which are volcanic in origin. The relatively thin (50–200 m) sedimentary cover is formed by recent biogenic sediments (siliceous ooze). The major characteristic of the area is the presence of polymetallic nodule deposits. The nodules, occurring at abundances frequently exceeding 10 kg/m2, are mostly exposed on the sediment surface, but some are also embedded or buried in the sediment. The nodules, in addition to the occasionally occurring larger hard-rock fragments of cobalt-rich ferromanganese crusts, add to the deep-sea habitat heterogeneity and themselves constitute both a unique deep-sea habitat, of a great interest to marine ecologists, and an important mineral resource, of a great appeal to the marine mining community the size of which has been recently growing considerably.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alldredge AL, Silver MW (1988) Characteristics, dynamics and significance of marine snow. Prog Oceanog 20:41–82

    Article  Google Scholar 

  • Aller JY (1997) Benthic community response to temporal and spatial gradients in physical disturbance within a deep-sea western boundary region. Deep-Sea Res I 44:39–69

    Article  Google Scholar 

  • Amador JA, Alfaro EJ, Liyano OG et al (2006) Atmospheric forcing of the eastern tropical Pacific: a review. Prog Oceanog 69:101–142

    Article  Google Scholar 

  • Andreev SI, Gramberg IS (1998) The explanatory note to the metallogenic map of the world ocean. VNIIOkeangeologiya, St. Petersburg

    Google Scholar 

  • Angel MV (1984) Detrital organic fluxes through pelagic ecosystems. In: Fasham MJ (ed) Energy and materials in marine ecosystems. Theory and practice. Plenum Press, London

    Google Scholar 

  • Angel MV, Rice TL (1996) The ecology of the deep ocean and its relevance to global waste management. J Appl Ecol 33:915–926

    Article  Google Scholar 

  • Ballance LT, Pitman RL, Fiedler PC (2006) Oceanographic influences on seabirds and cetaceans of the eastern tropical Pacific: a review. Prog Oceanog 69:360–390

    Article  Google Scholar 

  • Barash MS, Kruglikova SB, Mukhina VV (2000) Stratigraficheskiye osobennosti osadochnykh obrazovaniy provintsii Klarion-Klipperton (Vostochnaya ekvatorialnaya Patsifika). Okeanologia 40:424–433

    Google Scholar 

  • Billett DSM, Lampitt RS, Rice AL et al (1983) Seasonal sedimentation of phytoplankton to the deep sea benthos. Nature 302:520–522

    Article  Google Scholar 

  • Brown J, Colling A, Park D et al (1989) Ocean chemistry and deep sea sediments. The Open University, Milton Keynes

    Google Scholar 

  • Coxall HK, Wilson PA, Pälike H et al (2005) Rapid stepwise onset of Antarctic glaciation and deeper calcite compensation in the Pacific Ocean. Nature 433:53–57

    Article  Google Scholar 

  • Davies AJ, Roberts JM, Hall-Spencer J (2007) Preserving deep-sea natural heritage: emerging issues in offshore conservation and management. Biol Conserv 138:299–312

    Article  Google Scholar 

  • Demidova T (1999) The physical environment in nodule provinces of the deep sea. In: Deep-seabed polymetallic nodule exploration: development of environmental guidelines. Proceedings of International Seabed Authority’s workshop held in Sanya, Hainan Island, People’s Republic of China, 1–5 June 1998. International Seabed Authority, Kingston, Jamaica

    Google Scholar 

  • Fang J, Barcelona MJ, Nogi Y et al (2000) Biochemical implications and geochemical significance of novel phospholipids of the extremely barophilic bacteria from the Marianas Trench at 11,000 m. Deep-Sea Res I 47:1173–1182

    Article  Google Scholar 

  • Fiedler PC, Talley LD (2006) Hydrography of the eastern tropical Pacific: a review. Prog Oceanog 69:143–180

    Article  Google Scholar 

  • Fileman TW, Pond DW, Barlow RG et al (1998) Vertical profiles of pigments, fatty acids and amino aids: evidence for undegraded diatomaceous material sedimenting to the deep ocean in the Bellingshausen Sea, Antarctica. Deep-Sea Res I 45:333–346

    Article  Google Scholar 

  • Fowler SW, Knauer GA (1986) Role of large particles in the transport of elements and organic compounds through the oceanic water column. Prog Oceanog 16:147–194

    Article  Google Scholar 

  • Gage JD, Tyler PA (1985) Growth and reproduction of the deep sea urchin Echinus affinis. Mar Biol 90:41–53

    Article  Google Scholar 

  • Gage JD, Tyler PA (1991) Deep-sea biology: a natural history of organisms at the deep-sea floor. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Gooday AJ (1994) The biology of deep-sea foraminifera: a review of some advances and their applications in paleoceanography. Palaios 9:14–31

    Article  Google Scholar 

  • Hammond DE, McManus J, Berelson WM et al (1996) Early diagenesis of organic material in Equatorial Pacific sediments: stoichiometry and kinetics. Deep-Sea Res 43:1365–1380

    Article  Google Scholar 

  • Hannides AK, Smith CR (2003) The northeastern Pacific abyssal plain. In: Black KD, Shimmield GB (eds) Biogeochemistry of marine systems. Blackwell, Oxford

    Google Scholar 

  • Hein JR, Petersen S (2013) The geology of manganese nodules. In: Baker E, Beaudoin Y (eds) Deep sea minerals: manganese nodules, a physical, biological, environmental, and technical review, vol 1B. Secretariat of the Pacific Community, GRID-Arendal

    Google Scholar 

  • Hochachka PW (ed) (1976) Biochemistry at depth. Pressure effects on biochemical systems of abyssal and midwater organisms: the 1973 Kona expedition of the “Alpha Helix”. Pergamon Press, Oxford

    Google Scholar 

  • Hyun J-H, Kim K-H, Jung H-S et al (1998) Potential environmental impact of deep-seabed manganese nodule mining on the Synechococcus (Cyanobacteria) in the Northeast Equatorial Pacific: effect of bottom water-sediment slurry. Mar Geores Geotechnol 16:133–143

    Article  Google Scholar 

  • Iljin AV, Ivakin AN, Lysanov YP (1994) O raspredelenii zhelezomargantsevykh konkreciy na poligone Klarion-Klipperton. Okeanologia 34:911–914

    Google Scholar 

  • Iljin AV, Bogorov GB, Skorniakova NS (1997) O prostranstwennoy izmenchivosti zaleganiya zhelezo-margantsevykh konkretsiu (na poligone Klarion-Klipperton). Okeanologiya 37:285–294

    Google Scholar 

  • IOM (1993) Geologiya, konkrecyonosnost’ i prirodnye usloviya raiona pervonachalnoy deyatel’nosti SO Interokeanmetall. IOM, Szczecin

    Google Scholar 

  • Johnson GC, Toole JM (1993) Flow of deep and bottom waters in the Pacific at 10º N. Deep-Sea Res I 40:371–394

    Article  Google Scholar 

  • Kalogeropoulou V, Bett BJ, Gooday AJ et al (2010) Temporal changes (1989–1999) in deep-sea metazoan meiofaunal assemblages on the Porcupine Abyssal Plain, NE Atlantic. Deep Sea Res II 57:1383–1395

    Article  Google Scholar 

  • Khripounoff A, Vangriesheim A, Crassous P (1998) Vertical and temporal variations of particle fluxes in the deep tropical Atlantic. Deep-Sea Res I 45:293–316

    Article  Google Scholar 

  • Kolosov VP (1988) Chlorofill “a” i pervichnaya produkciya. In: Simonov AI (ed) Ekologicheskiye usloviya vostochno-ekvatoriyalnoy oblasti severnoy chasti tikhogo okeana. Gidrometeoizdat, Moskva

    Google Scholar 

  • Kontar EA, Sokov AV (1994) A benthic storm in northeastern tropical Pacific over the fields of manganese nodules. Deep-Sea Res 41:1069–1089

    Article  Google Scholar 

  • Kotliński R (1998a) Konkrecje polimetaliczne. In: Depowski S, Kotliński R, Rühle E et al (eds) Surowce mineralne mórz i oceanów. Wydawnictwo Naukowe Scholar, Warszawa

    Google Scholar 

  • Kotlinski R (1998b) The present state of knowledge on oceanic polymetallic ores as exemplified by Interoceanmetal Joint Organization’s activity. Mineral Pol 29:77–89

    Google Scholar 

  • Kotliński R (1999) Metallogenesis of the world’s ocean against the background of oceanic crust evolution. Special Paper 4, Polish Geological Institute

    Google Scholar 

  • Kotliński R, Rühle E (1998) Geneza i geologia oceanów. In: Depowski S, Kotliński R, Rühle E et al (eds) Surowce mineralne mórz i oceanów. Wydawnictwo Naukowe Scholar, Warszawa

    Google Scholar 

  • Kotliński R, Stoyanova V, Tkatchenko G (1996) Environmental studies on a reference transect in the IOM pioneer area. In: Chung JS, Das BM, Roesset J (eds) Proceedings of 6th ISOPE Conference, vol 1. Los Angeles, USA, pp 54–57

    Google Scholar 

  • Lodge M, Johnson D, Le Gurun G et al (2014) Seabed mining: International Seabed Authority environmental management plan for the Clarion-Clipperton Zone. A partnership approach. Mar Policy 49:66–72

    Article  Google Scholar 

  • Mantyla AW, Reid JL (1983) Abyssal characteristics of the World Ocean waters. Deep-Sea Res 30:805–833

    Article  Google Scholar 

  • Menzies RJ (1965) Conditions for the existence of life on the abyssal sea floor. Oceanog Mar Biol Ann Rev 3:195–210

    Google Scholar 

  • Mestas-Nunez AM, Miller AJ (2006) Interdecadal variability and climate change in the eastern trophical Pacific: a review. Prog Oceanog 69:267–284

    Article  Google Scholar 

  • Morgan CL (2000) Resource estimates of the Clarion-Clipperton manganese nodule deposits. In: Cronan DS (ed) Handbook of marine mineral deposits. CRC Press, Boca Raton

    Google Scholar 

  • Morgan CL, Odunton NA, Jones AF (1999) Synthesis of environmental impacts of deep seabed mining. Mar Geores Geotechnol 17:307–356

    Article  Google Scholar 

  • Neira C, Sellanes J, Levin LA et al (2001) Meiofaunal distributions on the Peru margin: relationship to oxygen and organic matter availability. Deep-Sea Res I 48:2453–2472

    Article  Google Scholar 

  • Nienstedt JC, Arnold AJ (1988) The distribution of benthic foraminifera on seamounts near the East Pacific Rise. J Foram Res 18:237–249

    Article  Google Scholar 

  • Nikitin OP (1997) Vertikalnaya struktura sinopticheskikh techeniy v severo-vostochnom tropikal’nom Tikhom okeane. Okeanologia 37:819–831

    Google Scholar 

  • Ozturgut E, Anderson GD, Burns RE et al (1978) Deep ocean mining of manganese nodules in the North Pacific: pre-mining environmental conditions and anticipated mining effects. NOÀA Techn Mem, ERL MESA-33

    Google Scholar 

  • Pennington TJ, Mahoney KL, Kuwahara VS et al (2006) Primary production in the eastern tropical Pacific: a review. Prog Oceanog 69:285–317

    Article  Google Scholar 

  • Pfannkuche O, Boetius A, Lochte K et al (1999) Responses of deep-sea benthos to sedimentation patterns in the North-East Atlantic in 1992. Deep-Sea Res I 46:573–596

    Article  Google Scholar 

  • Pope RH, DeMaster DJ, Smith CR et al (1996) Rapid bioturbation in equatorial Pacific sediments: evidence from excess 234Th measurements. Deep-Sea Res II 43:1339–1364

    Article  Google Scholar 

  • Rabalais NN, Diaz RJ, Levin LA et al (2010) Dynamics and distribution of natural and human-caused hypoxia. Biogeosci 7:585–619

    Article  Google Scholar 

  • Radziejewska T (2002) Responses of deep-sea meiobenthic communities to sediment disturbance simulating effects of polymetallic nodule mining. Int Rev Hydrobiol 87:459–479

    Article  Google Scholar 

  • Radziejewska T, Modlitba I (1999) Vertical distribution of meiobenthos in relation to geotechnical properties of deep-sea sediment in the IOM pioneer area (Clarion-Clipperton Fracture Zone, NE Pacific). In: Chung JS, Sharma R (eds), Proc 3rd Ocean Mining Symposium, Goa, India

    Google Scholar 

  • Ramirez-Llodra E, Brandt A, Danovaro R et al (2010) Deep, diverse and definitely different: unique attributes of the world’s largest ecosystem. Biogeosci 7:2851–2899

    Article  Google Scholar 

  • Ramirez-Llodra E, Tyler PA, Baker MC et al (2011) Man and the last great wilderness: human impact on the deep sea. PLoS ONE 6:e22588

    Article  Google Scholar 

  • Scharek R, Tupas LM, Karl DM (1999) Diatom fluxes to the deep sea in the oligotrophic North Pacific gyre at Station ALOHA. Mar Ecol Prog Ser 182:55–67

    Article  Google Scholar 

  • Schlitzer R (2004) Ocean Data View. http://odv.awi-bremerhaven.de

  • Seibold E, Berger WH (1993) The sea floor. An introduction to marine geology, 2nd edn. Springer, Berlin

    Google Scholar 

  • Semina HI, Mikaelyan AS, Belyaeva GA (1997) Fitoplankton raznykh razmernykh grupp v severnoy subtropicheskoy zone Tikhogo okeana. Okeanologia 37:730–738

    Google Scholar 

  • Smith CR (2013) Biology associated with manganese nodules. In: Baker E, Beaudoin Y (eds) Deep sea minerals: manganese nodules, a physical, biological, environmental, and technical review, vol 1B. Secretariat of the Pacific Community, GRID-Arendal

    Google Scholar 

  • Smith CR, Baco AR (2003) The ecology of whale falls at the seep-sea floor. Oceanog Mar Biol Ann Rev 41:311–354

    Google Scholar 

  • Smith CR, Hoover DJ, Doan SE et al (1996) Phytodetritus at the abyssal seafloor across 10° of latitude in the central equatorial Pacific. Deep-Sea Res II 43:1309–1338

    Article  Google Scholar 

  • Smith CR, Berelson W, DeMaster DJ et al (1997) Latitudinal variations in benthic processes in the abyssal equatorial Pacific: control by biogenic particle flux. Deep-Sea Res II 44:2295–2317

    Article  Google Scholar 

  • Smith CR, Maybaum HL, Baco AR et al (1998) Sediment community structure around a whale skeleton in the deep Northeast Pacific: macrofaunal, microbial and bioturbation effects. Deep-Sea Res II 45:335–364

    Article  Google Scholar 

  • Snelgrove RVP, Butman CA (1994) Animal-sediment relationships revisited: cause versus effect. Oceanog Mar Biol Ann Rev 32:111–177

    Google Scholar 

  • Sokov AV, Demidova TA (1992) Ob antitsiklonicheskom vikhre v severo-vostochnoy chasti tropicheskoy zony Tikhogo okeana. Meteorolog Gidrolog 3:57–64

    Google Scholar 

  • Stoecker DK, Gustafson DE, Verity PG (1996) Micro- and mesoprotozooplankton at 140°W in the equatorial Pacific: heterotrophs and mixotrophs. Aquat Microb Ecol 10:273–282

    Article  Google Scholar 

  • Thiel H, Pfannkuche O, Schriever G et al (1988/1989) Phytodetritus on the deep-sea floor in a central oceanic region of the northeast Atlantic. Biol Oceanog 6:203–239

    Google Scholar 

  • Thistle D (1998) Harpacticoid copepod diversity at two physically reworked sites in the deep sea. Deep-Sea Res II 45:13–24

    Article  Google Scholar 

  • Thistle D, Levin LA (1998) The effect of experimentally increased near-bottom flow on metazoan meiofauna at a deep-sea site, with comparison data on macrofauna. Deep-Sea Res I 45:625–638

    Article  Google Scholar 

  • Thistle D, Levin LA, Gooday AJ et al (1999) Physical reworking by near-bottom flow alters the metazoan meiofauna of Fieberling Guyot (northeast Pacific). Deep-Sea Res I 46:2041–2052

    Article  Google Scholar 

  • Tholosan O, Garcin J, Bianchi A (1999) Effects of hydrostatic pressure on microbial activity through a 2000 deep water column in the NW Mediterranean Sea. Mar Ecol Prog Ser 183:49–57

    Article  Google Scholar 

  • Tivey MK, Bradley AM, Joyce TM et al (2002) Insights into tide-related variability at seafloor hydrothermal vents from time-series temperature measurements. Earth Planet Sci Lett 202:693–707

    Article  Google Scholar 

  • Tkatchenko GG, Radziejewska T (1998) Recovery and recolonization processes in the area disturbed by a polymetallic nodule collector simulator. In: Chung JS, Olagnon M, Kim CH et al (eds) Proceedings of 8th ISOPE Conference, vol 2. Montreal, Canada, pp 282–286

    Google Scholar 

  • Tkatchenko G, Stoyanova V (1998) The scale and nature of water column variability in an area designated for polymetallic nodule mining. In: Chung JS, Olagnon M, Kim CH et al (eds) Proceedings of 8th ISOPE Conference, vol 1. Montreal, Canada, pp 39–43

    Google Scholar 

  • Tkatchenko G, Kotlinski R, Stoyanova V et al (1997) On the role of geologic factors in determining peculiarities of water mass structure in the Clarion-Clipperton ore field. In: Chung JS, Das BM, Matsui T et al (eds) Proceedings of 7th ISOPE Conference, vol 1. Honolulu, Hawaii, pp 959–961

    Google Scholar 

  • Tsuchiya M, Talley LD (1996) Water property distributions along an eastern Pacific hydrographic section at 135°W. J Mar Res 54:541–564

    Article  Google Scholar 

  • Tyler PA (1988) Seasonality in the deep sea. Oceanog Mar Biol Ann Rev 26:227–258

    Google Scholar 

  • Tyler PA (1995) Conditions for the existence of life at the deep-sea floor: an update. Oceanog Mar Biol Ann Rev 33:221–244

    Google Scholar 

  • Van Dover CL, Aronson J, Pendleton L et al (2014) Ecological restoration in the deep sea: Desiderata. Mar Pol 44:98–106

    Article  Google Scholar 

  • Wang C, Fiedler PC (2006) ENSO variability and the eastern tropical Pacific: a review. Prog Oceanog 69:239–266

    Article  Google Scholar 

  • Whitmarsh RA, Bull JM, Rothwell RG et al (1996) The evolution and structure of ocean basin. In: Sommerhayes CP, Thorpe SA (eds) Oceanography. An Illustrated Guide. Manson Publishing, London

    Google Scholar 

  • Wijffels SE, Toole JM, Bryden HL et al (1996) The water masses and circulation at 10°N in the Pacific. Deep-Sea Res I 43:501–544

    Article  Google Scholar 

  • Willett CS, Leben RR, Lavin MF (2006) Eddies and tropical instability waves in the eastern tropical Pacific: a review. Prog Oceanog 69:281–283

    Google Scholar 

  • Wishner KF, Ashjian CJ, Gelfman C et al (1995) Pelagic and benthic ecology of the lower interface of the eastern tropical Pacific oxygen minimum zone. Deep-Sea Res I 42:93–115

    Article  Google Scholar 

  • Yamazaki T, Kajitani J (1999) Deep-sea environment and Impact Experiment to It. In: Chung JS, Matsui T, Koterayama W (eds) Proceedings of 9th ISOPE Conference, vol 1. Brest, France, pp 374–381

    Google Scholar 

  • Young CM, Tyler PA (1993) Embryos of the deep sea echinoid Echinus affinis require high pressure for development. Limnol Oceanog 38:178–181

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teresa Radziejewska .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Radziejewska, T. (2014). Characteristics of the Sub-equatorial North-Eastern Pacific Ocean’s Abyss, with a Particular Reference to the Clarion-Clipperton Fracture Zone. In: Meiobenthos in the Sub-equatorial Pacific Abyss. SpringerBriefs in Earth System Sciences. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41458-9_2

Download citation

Publish with us

Policies and ethics