Skip to main content

Snookie: An Autonomous Underwater Vehicle with Artificial Lateral-Line System

  • Chapter
  • First Online:
Flow Sensing in Air and Water

Abstract

In this work we present Snookie, an autonomous underwater vehicle with an artificial lateral-line system. Integration of the artificial lateral-line system with other sensory modalities is to enable the robot to perform behaviors as observed in fish, such as obstacle detection and geometrical-shape reconstruction by means of hydrodynamic images. The present chapter consists of three sections devoted to design of the robot, its lateral-line system, and processing of the ensuing flow-sensory data. The artificial lateral-line system of Snookie is presented in detail, together with a simple version of a flow reconstruction algorithm applicable to both the artificial lateral-line system and, e.g. the blind Mexican cave fish. More in particular, the first section deals with the development of the autonomous underwater vehicle Snookie, which provides the functionality and is tailored to the requirements of the artificial lateral-line system. The second section is devoted to the implementation of the artificial lateral-line system that consists of an array of hot thermistor anemometers to be integrated in the nozzle. In the final section, the information processing ensuing from the flow sensors and leading to conclusions about the environment is presented. The measurement of the tangential velocities at the artificial lateral-line system together with the no-penetration condition provides the robot with Cauchy boundary conditions, so that the hydrodynamic mapping of potential flow onto the lateral line can be inverted. Through this inversion information is accessible from the flow around the artificial lateral line about objects in the neighbourhood, which alter the flow field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

2D:

2-dimensional

3D:

3-dimensional

6D:

6-dimensional

ALL:

Artificial lateral-line system

AUV:

Autonomous underwater vehicle

BEM:

Boundary-element method

BFS:

Body-fixed system

CAD:

Computer-aided design

FOR:

Frame of reference

PD:

Proportional-derivative

PVDF:

Polyvinylidene fluoride fibers

PWM:

Pulse-width modulation

SLAM:

Simultaneous localisation and mapping

TFR:

Thikonov-regularised flow-field reconstruction

References

  • Akanyeti O, Venturelli R, Visentin F, Chambers L, Megill WM, Fiorini P (2011) What information do Kármán streets offer to flow sensing? Bioinspir Biomim 6(3):036001

    Article  PubMed  Google Scholar 

  • Bleckmann H (2008) Peripheral and central processing of lateral line information. J Comp Physiol A 194(2):145–158

    Article  CAS  Google Scholar 

  • Bleckmann H, Zelick R (2009) Lateral line system of fish. Integr Zool 4(1):13–25

    Article  PubMed  Google Scholar 

  • Bleckmann H, Breithaupt T, Blickhan R, Tautz J (1991) The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and Crustaceans. J Comp Physiol A 168(6):749–757

    Article  CAS  PubMed  Google Scholar 

  • Boufianais R, Weymouth GD, Yue DKP (2010) Hydrodynamic object recognition using pressure sensing. Proc Royal Soc A: Math Phys Eng Sci 467(2125):19–38

    Article  Google Scholar 

  • Brennen CE (1982) A review of added mass and fluid inertial forces. Technical report

    Google Scholar 

  • Breslin JP, Andersen P (2008) Hydrodynamics of ship propellers. Cambridge University Press, Cambridge

    Google Scholar 

  • Bruun HH (1996) Hot wire anemometry. Oxford University Press, Oxford

    Google Scholar 

  • Burt de Perera T (2004) Spatial parameters encoded in the spatial map of the blind Mexican cave fish, Astyanax fasciatus. Anim Behav 68(2):291–295

    Article  Google Scholar 

  • von Campenhausen C, Riess I, Weissert R (1981) Detection of stationary objects by the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 143:369–374

    Article  Google Scholar 

  • Chagnaud BP, Bleckmann H, Engelmann J (2006) Neural responses of goldfish lateral line afferents to vortex motions. J Exp Biol 209(2):327–342

    Article  PubMed  Google Scholar 

  • Chen J, Engel J, Chen N, Pandya SD, Coombs S, Liu C (2006) Artificial lateral line and hydrodynamic object tracking. In: 19th IEEE international conference on micro electro mechanical systems, IEEE, pp 694–697

    Google Scholar 

  • Conley RA, Coombs S (1998) Dipole source localization by mottled sculpin III. Orientation after site-specific, unilateral denervation of the lateral line system. J Comp Physiol A 183(3):335–344

    Article  CAS  PubMed  Google Scholar 

  • Coombs S (1994) Nearfield detection of dipole sources by the goldfish (Carassius auratus) and the mottled sculpin (Cottus bairdi). J Exp Biol 190(1):109–129

    CAS  PubMed  Google Scholar 

  • Coombs S, Conley RA (1997a) Dipole source localization by mottled sculpin I. Approach strategies. J Comp Physiol A 180(4):387–399

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, Conley RA (1997b) Dipole source localization by the mottled sculpin II. The role of lateral line excitation patterns. J Comp Physiol A 180(4):401–415

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, van Netten SM (2005) The hydrodynamics and structural mechanics of the lateral line system. Fish Physiol 23:103–139

    Article  Google Scholar 

  • Coombs S, Patton P (2009) Lateral line stimulation patterns and prey orienting behavior in the Lake Michigan mottled sculpin (Cottus bairdi). J Comp Physiol A 195(3):279–297

    Article  Google Scholar 

  • Coombs S, Fay RR, Janssen J (1989) Hot-film anemometry for measuring lateral line stimuli. J Acoust Soc Am 85(5):2185–2193

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, Hastings M, Finneran J (1996) Modeling and measuring lateral line excitation patterns to changing dipole source locations. J Comp Physiol A 178(3):359–371

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, Braun CB, Donovan B (2001) The orienting response of Lake Michigan mottled sculpin is mediated by canal neuromasts. J Exp Biol 204(2):337–348

    CAS  PubMed  Google Scholar 

  • Courant R, Hilbert D (1989) Methods of mathematical physics, vol 1. Wiley-VCH, Germany

    Book  Google Scholar 

  • Curcić-Blake B, van Netten SM (2005) Rapid responses of the cupula in the lateral line of ruffe (Gymnocephalus cernuus). J Comp Physiol A 191(4):393–401

    Article  Google Scholar 

  • Curcić-Blake B, van Netten SM (2006) Source location encoding in the fish lateral line canal. J Exp Biol 209(8):1548–1559

    Article  PubMed  Google Scholar 

  • Dagamseh A, Wiegerink R, Lammerink T, Krijnen G (2013) Imaging dipole flow sources using an artificial lateral-line system made of biomimetic hair flow sensors. J Roy Soc Interface 10(83):162

    Article  Google Scholar 

  • Dehnhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail-following in harbor seals (Phoca vitulina). Science 293(5527):102–104

    Article  CAS  PubMed  Google Scholar 

  • Derou D, Dinten J, Herault L, Niez J (1995) Physical-model based reconstruction of the global instantaneous velocity field from velocity measurement at a few points. In: Proceedings of the workshop on physics-based modeling in computer vision, IEEE Computer Society Press, p 63

    Google Scholar 

  • Dijkgraaf S (1933) Untersuchungen über die Funktion der Seitenorgane an Fischen. Zeitschrift für Vergleichende Physiologic 20(1–2):162–214

    Article  Google Scholar 

  • Dijkgraaf S (1963) The functioning and significance of the lateral-line organs. Biol Rev 38(1):51–105

    Article  CAS  PubMed  Google Scholar 

  • Emsmann S, Lehmann A (1975) Entwicklung eines Thermistoranemometers zur Messung instationärer Wassergeschwindigkeiten. Fortschrittsberichte der VDI Zeitschriften 18(8)

    Google Scholar 

  • Engelmann J, Bleckmann H (2004) Coding of lateral line stimuli in the goldfish midbrain in still and running water. Zoology 107(2):135–151

    Article  PubMed  Google Scholar 

  • Engelmann J, Hanke W, Bleckmann H (2002) Lateral line reception in still-and running water. J Comp Physiol A 188(7):513–526

    Article  CAS  Google Scholar 

  • Eser U (1990) Thermisches Anemometer mit Kugelsonde zur Bestimmung kleiner Geschwindigkeitsvektoren. Ph.D. thesis, Universität Essen

    Google Scholar 

  • Essen Feldman J (1979) DTNSRDC revised standard submarine equations of motion. Technical report, DTNSRDC

    Google Scholar 

  • Felix W (1962) Strömungsmessung mit Thermistoren. Naunyn-Schmiedberg’s Arch exp Path u Pharmak 244:254–269

    CAS  Google Scholar 

  • Fernandez VI, Hou SM, Hover F, Lang JH, Triantafyllou M (2007) Lateralline inspired MEMS-array pressure sensing for passive underwater navigation. Technical report, MIT Sea Grant

    Google Scholar 

  • Fernandez VI, Hou SM, Hover FS (2009) Development and application of distributed MEMS pressure sensor array for AUV object avoidance. Technical report, MIT Sea Grant

    Google Scholar 

  • Fernandez VI, Maertens A, Yaul FM, Dahl J, Lang JH, Triantafyllou MS (2011) Lateral-line-inspired sensor arrays for navigation and object identification. Mar Technol Soc J 45(4):130–146

    Article  Google Scholar 

  • Fossen TI (1994) Guidance and control of ocean vehicles. Wiley, New York

    Google Scholar 

  • Franosch JMP, Hagedorn H, Goulet J, Engelmann J, van Hemmen JL (2009) Wake tracking and the detection of vortex rings by the canal lateral line of fish. Phys Rev Lett 103(7):078102

    Article  PubMed  Google Scholar 

  • Franosch JMP, Sichert AB, Suttner MD, van Hemmen JL (2005) Estimating position and velocity of a submerged moving object by the clawed frog Xenopus and by fish—a cybernetic approach. Biol Cybern 93(4):231–238

    Article  PubMed  Google Scholar 

  • Franosch JMP, Sosnowski S, Chami NK, Kūhlenck Hirche S (2010) Biomimetic lateral-line system for underwater vehicles. In: 9th IEEE sensors conference, pp 2212–2217

    Google Scholar 

  • Geer J (1975) Uniform asymptotic solutions for potential flow about a slender body of revolution. J Fluid Mech 67(04):817–827

    Article  Google Scholar 

  • Goulet J, Engelmann J, Chagnaud BP, Franosch JMP, Suttner MD, van Hemmen JL (2008) Object localization through the lateral line system of fish: theory and experiment. J Comp Physiol A 194(1):1–17

    Article  Google Scholar 

  • Hadamard J (1902) Sur les problemes aux dérivés partielles et leur signification physique. Princeton Univ Bull 13:49–52

    Google Scholar 

  • Handelsman RA, Keller JB (1967) Axially symmetric potential flow around a slender body. J Fluid Mech 28(01):131–147

    Article  Google Scholar 

  • Hanke W (2004) The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry. J Exp Biol 207(9):1585–1596

    Article  PubMed  Google Scholar 

  • Hanke W, Brucker C, Bleckmann H (2000) The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203(7):1193–1200

    CAS  PubMed  Google Scholar 

  • Hassan ES (1985) Mathematical analysis of the stimulus for the lateral line organ. Biol Cybern 52(1):23–36

    Article  CAS  PubMed  Google Scholar 

  • Hassan ES (1986) On the discrimination of spatial intervals by the blind cave fish (Anoptichthys jordani). J Comp Physiol A 159(5):701–710

    Article  CAS  PubMed  Google Scholar 

  • Hassan ES (1989) Hydrodynamic imaging of the surroundings by the lateral line of the blind cave fish Anoptichthys jordani. In: The mechanosensory lateral line. Springer, New York, pp 217–227

    Google Scholar 

  • Hassan ES (1992a) Mathematical description of the stimuli to the lateral line system of fish derived from a three-dimensional flow field analysis I. The cases of moving in open water and of gliding towards a plane surface. Biol Cybern 66(5):453–461

    Article  Google Scholar 

  • Hassan ES (1992b) Mathematical description of the stimuli to the lateral line system of fish derived from a three-dimensional flow field analysis II. The case of gliding alongside or above a plane surface. Biol Cybern 66(5):443–452

    Article  Google Scholar 

  • Hassan ES (1993) Mathematical description of the stimuli to the lateral line system of fish, derived from a three-dimensional flow field analysis III. The case of an oscillating sphere near the fish. Biol Cybern 69(5–6):525–538

    Google Scholar 

  • Howe MS (2006) Hydrodynamics and sound. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Hsieh TY, Huang SW, Mu LJ, Chen E, Guo J (2011) Artificial lateral line design for robotic fish. In: Underwater technology (UT), 2011 IEEE symposium on and 2011 workshop on scientific use of submarine cables and related technologies (SSC), pp 1–6

    Google Scholar 

  • Isakov V (1998) Inverse problems for partial differential equations, Applied Mathematical Sciences. Springer, New York

    Book  Google Scholar 

  • Itsweire IC, Helland KN (1983) A high-performance low-cost constant-temperature hot-wire anemometer. J Phys E-Scientific Instrum 16(6):549–553

    Article  Google Scholar 

  • Izadi N, de Boer MJ, Berenschot JW, Krijnen GJM (2010) Fabrication of superficial neuromast inspired capacitive flow sensors. J Micromech Microeng 20(8):85041

    Article  Google Scholar 

  • Kinsey JC, Eustice RM, Whitcomb LL (2006) A survey of underwater vehicle navigation: recent advances and new challenges. In: IFAC conference of manoeuvering and control of marine craft, Lisbon, Portugal

    Google Scholar 

  • Kirchhoff GR (1870) Über die Bewegung eines Rotationskörpers in einer Flüssigkeit. J für die reine und angewandte Mathematik 71:237–262

    Article  Google Scholar 

  • Klein A, Bleckmann H (2011) Determination of object position, vortex shedding frequency and flow velocity using artificial lateral line canals. Beilstein J Nanotechnol 2:276–283

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Klein A, Herzog H, Bleckmann H (2011) Lateral line canal morphology and signal to noise ratio. In: Proc. SPIE 7975, Bioinspiration, Biomimetics, and Bioreplication, p 797507

    Google Scholar 

  • Klein A, Münz H, Bleckmann H (2013) The functional significance of lateral line canal morphology on the trunk of the marine teleost Xiphister atropurpureus (Stichaeidae). J Comp Physiol A 199(9):735–749

    Article  Google Scholar 

  • Korotkin AI (2010) Added masses of ship structures. Fluid mechanics and its applications. Springer, New York

    Google Scholar 

  • Kröther S, Mogdans J, Bleckmann H (2002) Brainstem lateral line responses to sinusoidal wave stimuli in still and running water. J Exp Biol 205(10):1471–1484

    PubMed  Google Scholar 

  • Künzel S, Bleckmann H, Mogdans J (2011) Responses of brainstem lateral line units to different stimulus source locations and vibration directions. J Comp Physiol A 197(7):773–787

    Article  Google Scholar 

  • Lamb H (1945) Hydrodynamics, 6th edn. Dover publications, New York

    Google Scholar 

  • Lenz D, Sosnowski S, Vollmayr AN, van Hemmen JL, Hirche S (2014) SLAM with an artificial lateral-line system. In preparation

    Google Scholar 

  • Lewandowski EM (2003) The dynamics of marine craft: maneuvering and seakeeping. World Scientific Pub Co Inc, Singapore

    Google Scholar 

  • Li F, Liu W, Stefanini C, Fu X, Dario P (2010) A novel bioinspired PVDF micro/nano hair receptor for a robot sensing system. Sensors 10(1):994–1011

    Article  PubMed  Google Scholar 

  • Liu C (2007) Micromachined biomimetic artificial haircell sensors. Bioinspir Biomim 2(4):162–169

    Article  Google Scholar 

  • Liu Y (2009) Fast multipole boundary element method: theory and applications in engineering, 1st edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  • Lomas CG (1986) Fundamentals of hot wire anemometry. Cambridge University Press, Cambridge

    Google Scholar 

  • Martiny N, Sosnowski S, Hirche S, Nie Y, Franosch JMP (2009) Design of a lateral-line sensor for an autonomous underwater vehicle. In: 8th IFAC international conference on manoeuvring and control of marine craft, Guaruja, Brazil, pp 292–297

    Google Scholar 

  • McHenry MJ, Strother JA, van Netten SM (2008) Mechanical filtering by the boundary layer and fluid-structure interaction in the superficial neuromast of the fish lateral line system. J Comp Physiol A 194(9):795–810

    Article  Google Scholar 

  • Meirovitch L (2004) Methods of analytical dynamics. Dover civil and mechanical engineering. Dover Publications, New York

    Google Scholar 

  • Meyer G, Klein A, Mogdans J, Bleckmann H (2012) Toral lateral line units of goldfish, Carassius auratus, are sensitive to the position and vibration direction of a vibrating sphere. J Comp Physiol A 198(9):639–653

    Article  Google Scholar 

  • Middlebrook GB, Piret EL (1950) Hot wire anemometry-solution of some difficulties in measurement of low water velocities. Ind Eng Chem 42(8):1511–1513

    Article  CAS  Google Scholar 

  • Mogdans J, Bleckmann H (2012) Coping with flow: behavior, neurophysiology and modeling of the fish lateral line system. Biol Cybern 106(11–12):627–642

    Article  PubMed  Google Scholar 

  • Motamed M, Yan J (2005) A review of biological, biomimetic and miniature force sensing for microflight. In: 2005 IEEERSJ international conference on intelligent robots and systems, pp 2630–2637

    Google Scholar 

  • Murray NE, Ukeiley LS (2003) Estimation of the flow field from surface pressure measurements in an open cavity. AIAA J 41(5):969–972

    Article  Google Scholar 

  • van Netten SM (2006) Hydrodynamic detection by cupulae in a lateral line canal: functional relations between physics and physiology. Biol Cybern 94(1):67–85

    Article  PubMed  Google Scholar 

  • Newman JN (1977) Marine hydrodynamics. MIT Press, Cambridge

    Google Scholar 

  • Nguyen N, Jones DL, Yang Y, Liu C (2011) Flow vision for autonomous underwater vehicles via an artificial lateral line. EURASIP J Adv Signal Process 2011(1):406, 806

    Google Scholar 

  • Nicholson JW, Healey AJ (2008) The present state of autonomous underwater vehicle (AUV) applications and technologies. Marine Technol Soc J 42(1):8

    Article  Google Scholar 

  • Obasaju ED, Bearman PW, Graham JMR (1988) A study of forces, circulation and vortex patterns around a circular cylinder in oscillating flow. J Fluid Mech 196(1):467–494

    Article  Google Scholar 

  • Oertel H, Mayes K (eds) (2004) Prandtl’s essentials of fluid mechanics. Applied mathematical sciences, 2nd edn. Springer, New York

    Google Scholar 

  • Pandya S, Yang Y, Liu C, Jones DL (2007) Biomimetic imaging of flow phenomna. In: IEEE international conference on acoustics, speech and signal processing, vol 2, 2007 ICASSP 2007, pp 933–936

    Google Scholar 

  • Pandya SD, Yang Y, Jones DL, Engel J, Liu C (2006) Multisensor processing algorithms for underwater dipole localization and tracking using MEMS artificial lateral-line sensors. EURASIP J Adv Signal Process 1–8

    Google Scholar 

  • Panton R (2005) Incompressible flow, 3rd edn. Wiley, New York

    Google Scholar 

  • Partridge BL, Pitcher TJ (1980) The sensory basis of fish schools: relative roles of lateral line and vision. J Comp Physiol A 135(4):315–325

    Article  Google Scholar 

  • Patton P, Windsor S, Coombs S (2010) Active wall following by Mexican blind cavefish (Astyanax mexicanus). J Comp Physiol A 196(11):853–867

    Article  Google Scholar 

  • Peleshanko S, Julian MD, Ornatska M, McConney ME, LeMieux MC, Chen N, Tucker C, Yang Y, Liu C, Humphrey JAC, Tsukruk VV (2007) Hydrogel-encapsulated microfabricated haircells mimicking fish cupula neuromast. Adv Mater 19(19):2903–2909

    Article  CAS  Google Scholar 

  • Perry AE (1982) Hot-wire anemometry. Clarendon Press, Oxford

    Google Scholar 

  • Plachta DTT (2003) A hydrodynamic topographic map in the midbrain of goldfish Carassius auratus. J Exp Biol 206(19):3479–3486

    Article  PubMed  Google Scholar 

  • Pohlmann K, Grasso FW, Breithaupt T (2001) Tracking wakes: the nocturnal predatory strategy of piscivorous catfish. Proc Natl Acad Sci USA 98(13):7371–7374

    Article  CAS  PubMed  Google Scholar 

  • Pohlmann K, Atema J, Breithaupt T (2004) The importance of the lateral line in nocturnal predation of piscivorous catfish. J Exp Biol 207(17):2971–2978

    Article  PubMed  Google Scholar 

  • Qualtieri A, Rizzi F, Todaro MT, Passaseo A, Cingolani R, De Vittorio M (2011) Stress-driven A1N cantilever-based flow sensor for fish lateral line system. Microelectron Eng 88(8):2376–2378

    Article  CAS  Google Scholar 

  • Sharma S, Coombs S, Patton P, Burt de Perera T (2009) The function of wall-following behaviors in the Mexican blind cavefish and a sighted relative, the Mexican tetra (Astyanax). J Comp Physiol A 195(3):225–240

    Article  Google Scholar 

  • Sichert A, Bamler R, van Hemmen JL (2009) Hydrodynamic object recognition: when multipoles count. Phys Rev Lett 102(5):058104

    Article  PubMed  Google Scholar 

  • Sosnowski S, Franosch JMP, Zhang L, Nie Y, Hirche S (2010) Simulation of the underwater vehicle “Snookie”: navigating like a fish. In: 1st international conference on applied bionics and biomechanics

    Google Scholar 

  • Strickert H (1974) Hitzdraht-und Hitzfilmanemometrie. VEB Verlag Technik, Berlin

    Google Scholar 

  • Suzuki T, Colonius T (2003) Inverse-imaging method for detection of a vortex in a channel. AIAA J 41(9):1743–1751

    Article  Google Scholar 

  • Teyke T (1985) Collision with and avoidance of obstacles by blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 157(6):837–843

    Article  CAS  PubMed  Google Scholar 

  • Thrun S, Burgard W, Fox D (2005) Probabilistic robotics (intelligent robotics and autonomous agents series). MIT Press, Cambridge

    Google Scholar 

  • Urban S, Vollmayr AN, Sosnowski S, Hirche S, van Hemmen JL (2014) Hydrodynamic imaging on a 1-dimensional manifold and its inversion in 2-dimensional potential flow. In preparation

    Google Scholar 

  • Van Trump WJ, McHenry MJ (2008) The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio). J Exp Biol 211(13):2105–2115

    Article  PubMed  Google Scholar 

  • Vasilescu I, Detweiler C, Doniec M, Gurdan D, Sosnowski S, Stumpf J, Rus D (2010) AMOUR V: a hovering energy efficient underwater robot capable of dynamic payloads. Int J Robot Res 29:547–570

    Article  Google Scholar 

  • Vogel D, Bleckmann H (2001) Behavioral discrimination of water motions caused by moving objects. J Comp Physiol A 186(12):1107–1117

    Article  CAS  Google Scholar 

  • Weissert R, von Campenhausen C (1981) Discrimination between stationary objects by the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 143(3):375–381

    Article  Google Scholar 

  • Wieskotten S, Mauck B, Miersch L, Dehnhardt G, Hanke W (2011) Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina). J Exp Biol 214(11):1922–1930

    Article  PubMed  Google Scholar 

  • Windsor SP, Tan D, Montgomery JC (2008) Swimming kinematics and hydrodynamic imaging in the blind Mexican cave fish (Astyanax fasciatus). J Exp Biol 211(18):2950–2959

    Article  PubMed  Google Scholar 

  • Windsor SP, Norris SE, Cameron SM, Mallinson GD, Montgomery JC (2010a) The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part I: open water and heading towards a wall. J Exp Biol 213(22):3819–3831

    Article  PubMed  Google Scholar 

  • Windsor SP, Norris SE, Cameron SM, Mallinson GD, Montgomery JC (2010b) The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part II: gliding parallel to a wall. J Exp Biol 213(22):3832–3842

    Article  PubMed  Google Scholar 

  • Yang Y, Chen J, Engel J, Pandya S, Chen N, Tucker C, Coombs S, Jones DL, Liu C (2006) Distant touch hydrodynamic imaging with an artificial lateral line. Proc Natl Acad Sci USA 103(50):18891–18895

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Nguyen N, Chen N, Lockwood M, Tucker C, Hu H, Bleckmann H, Liu C, Jones DL (2010) Artificial lateral line with biomimetic neuromasts to emulate fish sensing. Bioinspiration Biomimetics 5(1):16001

    Article  PubMed  Google Scholar 

  • Yang Y, Klein A, Bleckmann H, Liu C (2011) Artificial lateral line canal for hydrodynamic detection. Appl Phys Lett 99(2):023701

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported in part by the DFG excellence initiative research cluster Cognition for Technical Systems (CoTeSys)—see www.cotesys.org—and the Bernstein Center for Computational Neuroscience (BCCN) Munich—see www.bccn-munich.de. We thank all students, who have participated in this project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas N. Vollmayr .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Vollmayr, A.N., Sosnowski, S., Urban, S., Hirche, S., van Hemmen, J.L. (2014). Snookie: An Autonomous Underwater Vehicle with Artificial Lateral-Line System. In: Bleckmann, H., Mogdans, J., Coombs, S. (eds) Flow Sensing in Air and Water. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41446-6_20

Download citation

Publish with us

Policies and ethics