Skip to main content

Hydrodynamic Object Formation: Perception, Neuronal Representation, and Multimodal Integration

  • Chapter
  • First Online:
  • 1553 Accesses

Abstract

Lateral-line encoding is diffuse, needing at least a large part of the fish body and several detectors to measure the information contained in the velocity or pressure field surrounding a fish or an aquatic frog such as Xenopus. This paper presents a careful analysis of the mathematical mechanisms and algorithms underlying neuronal information processing as it is performed by the lateral-line system both in the perception ensuing from neuromasts and in the resulting neuronal representations, the maps. The goal is to explicitly show how the lateral line can simultaneously perceive several objects, e.g., identical ones, which role fish geometry plays in lateral-line detection, and why its direct range is short, about one fish length. A lateral-line ‘object’ in the outside world has both position and shape and the lateral line can handle both, at the price of having a restricted range. Detection of vortex wakes as hydrodynamic entities exhibiting the consequence of conservation of angular momentum is also analyzed and contrasted with the instantaneous momentum transfer studied as the usual lateral-line stimulus. Finally, it is shown how lateral-line ‘objects’ may arise neuronally both separately and in the context of a multimodal integration of the lateral-line system and vision, and a concrete theory of map formation in the torus on the basis of neuroanatomy and spike-timing-dependent plasticity (STDP) in conjunction with local excitation and global inhibition is presented. An appendix gives a full and simple mathematical account of surface-wave hydrodynamics, including surface tension.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    Great care is needed in the case of shallow baths with a depth h of only a few cm. On the other hand, the experimental setup of, e.g., Elepfandt et al. (2000) is a nearly optimal.

References

  • Acheson DJ (1990) Elementary fluid dynamics. Oxford University Press, Oxford

    Google Scholar 

  • Bachman G, Narici L (1966) Functional analysis. Academic, New York; (2000) Dover, Mineola

    Google Scholar 

  • Bastian J (1982) Vision and electroreception: integration of sensory information in the optic tectum of the weakly electric fish Apteronotus albifrons. J Comp Physiol A 147:287–297

    Article  Google Scholar 

  • Bi G-Q, Poo M-M (2001) Synaptic modification by correlated activity: HebbÕs postulate revisited. Annu Rev Neurosci 24:139–166

    Article  CAS  PubMed  Google Scholar 

  • Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. Fischer, Stuttgart

    Google Scholar 

  • Bleckmann H, Schwarz E (1982) The functional significance of frequency modulation within a wave train for prey localization in the surface-feeding fish Aplocheilus lineatus (Cyprinodontidae). J Comp Physiol A 145:331–339

    Article  Google Scholar 

  • Billingham J, King AC (2000) Wave motion. Cambridge University Press, Cambridge

    Google Scholar 

  • Blickhan R, Krick C, Zehren D, Nachtigall W, Breithaupt T (1992) Generation of a vortex chain in the wake of a subundulatory swimmer. Naturw 79:220–221

    Article  Google Scholar 

  • Bürck M, Friedel P, Sichert AB, Vossen C, van Hemmen JL (2010) Optimality in mono- and multi-sensory map formation. Biol Cybern 103:1–20

    Article  PubMed  Google Scholar 

  • Calvert G, Spence C, Stein BE (eds) (2004) The handbook of multisensory processes. MIT Press, Cambridge

    Google Scholar 

  • von Campenhausen C, Riess I, Weissert R (1981) Detection of stationary objects by the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 143:369–374

    Article  Google Scholar 

  • Chagnaud BP, Bleckmann H, Engelmann J (2006) Neural responses of goldfish lateral line afferents to vortex motions. J Exp Biol 209:327–342

    Article  PubMed  Google Scholar 

  • Chung SH, Stirling RV, Gazei RM (1975) The structural and functional development of the retina in larval Xenopus. J Embryol Exp Morph (now: Development) 33(4):915–940. The Appendix Optics of Xenopus eyes during development by M. Land and R. V. Stirling appears on pp 934–940. The author thanks Susan Udin (SUNY at Buffalo) for drawing his attention to this wonderful piece of work

    Google Scholar 

  • Claas B, Münz H (1996) Analysis of surface wave direction by the lateral line system of Xenopus: source localization before and after inactivation of different parts of the lateral line. J Comp Physiol A 178:253–268

    Article  CAS  PubMed  Google Scholar 

  • Clegg JG (1968) Calculus of variations. Oliver and Boyd, Edinburgh

    Google Scholar 

  • Coombs S (1994) Nearfield detection of dipole sources by the goldfish (Carassius auratus) and the mottled sculpin (Cottus bairdi). J Exp Biol 190:109–129

    CAS  PubMed  Google Scholar 

  • Coombs S, Conley RA (1997) Dipole source localization by mottled sculpin I: approach strategies. J Comp Physiol A 180:387–399

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, van Netten S (2006) The hydrodynamics and structural mechanics of the lateral line system. Chapter 4 in: fish physiology. In: Shadwick RE, Lauder GV (eds) Fish biomechanics, vol 23. Academic

    Google Scholar 

  • Coombs S, Hastings M, Finneran J (1996) Modeling and measuring lateral line excitation patterns to changing dipole source locations. J Comp Physiol A 178:359–371

    Article  CAS  PubMed  Google Scholar 

  • Coombs S, New JG, Nelson M (2002) Information-processing demands in electrosensory and mechanosensory lateral line systems. J Physiol (Paris) 96:341–354

    Article  Google Scholar 

  • Ćurčić-Blake B, van Netten SM (2006) Source location encoding in the fish lateral line canal. J Exp Biol 209:1548–1559

    Article  PubMed  Google Scholar 

  • Denton E, Gray JAB (1982) The rigidity of fish and patterns of lateral line stimulation. Nature 297:679–681

    Article  CAS  PubMed  Google Scholar 

  • Denton E, Gray JAB (1983) Mechanical factors in the excitation of clupeid lateral lines. Proc R Soc Lond B 218:1–26

    Google Scholar 

  • Dickinson M (2003) How to walk on water. Nature 424:621–622

    Article  CAS  PubMed  Google Scholar 

  • Dijksterhuis EJ (1969) The mechanization of the world picture. Oxford University Press, Oxford

    Google Scholar 

  • Dijkgraaf S (1963) The functioning and significance of the lateral-line organs. Biol Rev 38:51–105

    Article  CAS  PubMed  Google Scholar 

  • Drucker EG, Lauder GV (2002) Experimental hydrodynamics of fish locomotion: Functional insights from wake visualization. Integr Comp Biol 42(2):243–257

    Article  PubMed  Google Scholar 

  • Dym H, McKean HP (1972) Fourier series and integrals. Academic, New York

    Google Scholar 

  • Elepfandt A (1982) Accuracy of taxis response to water waves in the clawed toad (Xenopus laevis Daudin) with intact or with lesioned lateral line system. J Comp Physiol A 148:535–545

    Article  Google Scholar 

  • Elepfandt A (1984) The role of ventral lateral line organs in water wave localization in the clawed toad (Xenopus laevis). J Comp Physiol A 154:773–780

    Google Scholar 

  • Elepfandt A (1986) Detection of individual waves in an interference pattern by the clawed frog Xenopus laevis Daudin. Neurosci Lett 26:S380

    Google Scholar 

  • Elepfandt A (2012) private communication

    Google Scholar 

  • Elepfandt A, Wiedemer L (1986) Lateral-line responses to water surface waves in the clawed frog, Xenopus laevis. J Comp Physiol A 160:667–682

    Article  Google Scholar 

  • Elepfandt A, Seiler B, Aicher B (1985) Water wave frequency discrimination in the clawed frog, Xenopus laevis. J Comp Physiol A 157:255–261

    Article  Google Scholar 

  • Elepfandt A, Kroese ABA, van Netten SM, private communications. The latter two have performed their experiments independently of Elepfandt; their lateral-line object was a passing zebrafish

    Google Scholar 

  • Elepfandt A, Lebrecht A, Schroedter K, Brudermanns B (2004) Discrimination of two water waves presented simultaneously in the clawed frog, Xenopus laevis laevis. In: Abstract 7th congress of the international society for neuroethology; Schroedter K, Staatsexamensarbeit, Humboldt Universität zu Berlin, (2002) under the direction of A. Elepfandt

    Google Scholar 

  • Elepfandt A, Eistetter I, Fleig A, Günther E, Hainich M, Hepperle S, Traub B (2000) Hearing threshold and frequency discrimination in the purely aquatic frog Xenopus laevis (Pipidae): measurement by means of conditioning. J Exp Biol 203:3621–3629; see in particular Fig. 1

    Google Scholar 

  • von der Emde G, Engelmann J (2011) Active electrolocation. In: Farrell AP (ed) Encyclopedia of fish physiology: from genome to environment, vol 1. Elsevier, Amsterdam, pp 375–386

    Google Scholar 

  • Engelmann J, Bleckmann H (2004) Coding of lateral line stimuli in the goldfish midbrain in still and running water. Zoology 107(2):135–151

    Article  PubMed  Google Scholar 

  • Faucher K, Parmentier E, Becco C, Vandewalle N, Vandewalle P (2010) Fish lateral system is required for accurate control of shoaling behaviour. Animal Behav 79:679–687

    Article  Google Scholar 

  • Flanders M (2011) What is the biological basis of sensorimotor integration? Biol Cybern 104:1–8

    Article  PubMed Central  PubMed  Google Scholar 

  • Franosch J-MP, Sobotka MC, Elepfandt E, van Hemmen JL (2003) Minimal model of prey localization through the lateral-line system. Phys Rev Lett 91:158101

    Article  PubMed  Google Scholar 

  • Franosch J-MP, Lingenheil M, van Hemmen JL (2005a) How a frog learns what is where in the dark. Phys Rev Lett 95:078106

    Article  PubMed  Google Scholar 

  • Franosch J-MP, Sichert AB, Sobotka MC, Elepfandt A, van Hemmen JL (2005b) Model of amphibian prey localization through the lateral-line system. Physik Department T35, Technische Universität München, internal report

    Google Scholar 

  • Franosch J-MP, Hagedorn HJA, Goulet J, Engelmann J, van Hemmen JL (2009) Wake tracking and the detection of vortex rings by the canal lateral line of fish. Phys Rev Lett 103:078102

    Article  PubMed  Google Scholar 

  • Friedel P, van Hemmen JL (2008) Inhibition, not excitation, is the key to multimodal sensory integration. Biol Cybern 98:597–618

    Article  PubMed  Google Scholar 

  • Geer J (1975) Uniform asymptotic solutions for potential flow around a slender body of revolution. J Fluid Mech 67:817–827

    Article  Google Scholar 

  • Gelfand IM, Fomin SV (1963) Calculus of variations. Prentice-Hall, Englewood Cliffs

    Google Scholar 

  • Gerstner W, van Hemmen JL (1994) Coding and information processing in neural networks. In: Do-many E, van Hemmen JL, Schulten K (eds) Models of neural networks II. Springer, New York, pp 39–47

    Google Scholar 

  • Gerstner W, Kempter R, van Hemmen JL, Wagner H (1996) A neuronal learning rule for sub-millisecond temporal coding. Nature 383:76–78

    Article  CAS  PubMed  Google Scholar 

  • Görner P (1963) Untersuchungen zur Morphologie und Elektrophysiologie des Seitenlinienorgans vom Krallenfrosch (Xenopus laevis Daudin). Z vergl Physiol 47:316–338

    Article  Google Scholar 

  • Goulet J (2010) Information processing in the lateral-line system of fish. Doctoral Dissertation, Physik Department T35, Technische Universität München. http://mediatum2.ub.tum.de/node?id=959089

  • Goulet J, Engelmann J, Chagnaud BP, Franosch J-MP, Suttner MD, van Hemmen JL (2008) Object localization through the lateral line system of fish: theory and experiment. J Comp Physiol A 194:1–17

    Article  Google Scholar 

  • Goulet J, van Hemmen JL, Jung SN, Chagnaud BP, Scholze B, Engelmann J (2012) Temporal precision and reliability in the velocity regime of a hair-cell sensory system: the mechanosensory lateral-line of goldfish, Carassius auratus. J Neurophysiol 107:2581–2593

    Article  PubMed  Google Scholar 

  • Grothe B, Pecka M, McAlpine D (2010) Mechanisms of sound localization in mammals. Physiol Rev 90:983–1012

    Article  CAS  PubMed  Google Scholar 

  • Gutfreund Y, Knudsen EI (2007) Visual instruction of the auditory space map in the midbrain. In: Calvert et al. (2004) Chapter 38

    Google Scholar 

  • Gutfreund Y, Zheng W, Knudsen EI (2002) Gated visual input to the central auditory system. Science 297:1556–1559

    Google Scholar 

  • Gutfreund Y, King A (2012) What is the role of vision in the development of the auditory space map? Chapter 32. In: Stein BE (ed) The new handbook of multisensory processes. Cambridge, MIT Press

    Google Scholar 

  • Guyon E, Hulin J-P, Petit L, Mitescu CD (2001) Physical hydrodynamics. Oxford University Press, Oxford

    Google Scholar 

  • Hanke W, Brücker C, Bleckmann H (2000) The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203:1193–1200

    CAS  PubMed  Google Scholar 

  • Hanke W, Bleckmann H (2004) The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) investigated with scanning particle image velocimetry. J Exp Biol 207:1585–1596

    Article  PubMed  Google Scholar 

  • Harris GG, van Bergeijk WA (1962) Evidence that the lateral-line organ responds to near-field displacements of sound sources in water. J Acoust Soc Am 34(12):1834–1841

    Google Scholar 

  • Hassan El-S (1985) Mathematical analysis of the stimulus for the lateral line organ. Biol Cybern 52:23–36

    Article  CAS  PubMed  Google Scholar 

  • Hassan EI-S (1992a) Mathematical description of the stimuli to the lateral line system of fish derived from a three-dimensional flow field analysis: I The cases of moving in open water and of gliding towards a plane surface. Biol Cybern 66:443–452

    Article  Google Scholar 

  • Hassan EI-S (1992b) Mathematical description of the stimuli to the lateral line system of fish derived from a three-dimensional flow field analysis: II The case of gliding alongside or above a plane surface. Biol Cybern 66:453–461

    Article  Google Scholar 

  • Hassan El-S (1993) Mathematical description of the stimuli to the lateral line system of fish, derived from a three-dimensional flow field analysis: III The case of an oscillating sphere near the fish. Biol Cybern 69:525–538

    Google Scholar 

  • van Hemmen JL (2001) Theory of synaptic plasticity In: Moss F, Gielen S (eds) Handbook of biophysics, vol 4; see in particular §2 and Appendices A and B. Elsevier, Amsterdam, pp 771–823

    Google Scholar 

  • van Hemmen JL (2006) What is a neuronal map, how does it arise, and what is it good for? In: van Hemmen JL, Sejnowski TJ (eds) 23 Problems in systems neuroscience. Oxford University Press, New York, pp 83–102

    Google Scholar 

  • van Hemmen JL (2010) Lateral-line detection of underwater objects: from goldfish to submarines. Bull Am Phys Soc 55(2):V10.00008. See also TUM Faszination Forschung 7(10):70–75

    Google Scholar 

  • Heiligenberg W, Rose GJ (1987) The optic tectum of the gymnotiform electric fish, Eigenmannia: labeling of physiologically identified cells. Neuroscience 22:331–340

    Article  CAS  PubMed  Google Scholar 

  • Hopkins CD (2009) Electrical perception and communication. In: Squire LR (ed) Encyclopedia of neuroscience, vol 3. Academic Press, Oxford, pp 813–831

    Google Scholar 

  • Isakov V (2006) Inverse problems for partial differential equations, 2nd edn. Springer, New York

    Google Scholar 

  • Isenberg C (1992) The science of soap films and soap bubbles. Dover, Mineola

    Google Scholar 

  • Janssen J, Coombs S, Pride S (1990) Feeding and orientation of mottled sculpin, Cottus bairdi, to water jets. Environ Biol Fishes 29:43–50

    Article  Google Scholar 

  • Jazayeri M, Movshon JA (2006) Optimal representation of sensory information by neural populations. Nat Neurosci 9:690–696

    Article  CAS  PubMed  Google Scholar 

  • Jielof R, Spoor A, de Vries Hl (1952) The microphonic activity of the lateral line. J Physiol 116:137–157

    CAS  PubMed  Google Scholar 

  • Käse RH, Bleckmann H (1987) Prey localization by surface wave ray-tracing: fish track bugs like oceanographers track storms. Experientia 43:290–293

    Article  PubMed  Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 83–130

    Google Scholar 

  • Keller CH, Takahaski TT (1996) Binaural cross-correlation predicts the responses of neurons in the owl’s auditory space map under conditions simulating summing localization. J Neurosci 16(13):4300–4309

    CAS  PubMed  Google Scholar 

  • Kuiper JW (1956) The microphonic effect of the lateral line organ. Ph. D. Thesis, Natuurkundig Laboratorium, University of Groningen, The Netherlands

    Google Scholar 

  • Knudsen EI (2002) Instructed learning in the auditory localization pathway of the barn owl. Nature 417:322–328

    Article  CAS  PubMed  Google Scholar 

  • Knudsen EI, Knudsen PF (1989) Vision calibrates sound localization in developing barn owls. J Neurosci 9(9):3306–3313

    CAS  PubMed  Google Scholar 

  • Knudsen EI, du Lac S, Esterly SD (1987) Computational maps in the brain. Annu Rev Neurosci 10:41–65

    Article  CAS  PubMed  Google Scholar 

  • Krippner M (2012) Multimodales Lernen im blinden Mexikanischen Hohlenfisch. Diploma thesis, Physik Department T35, Technische Universität München

    Google Scholar 

  • Kühn R, van Hemmen JL (1995) Temporal association. In: Domany E, van Hemmen JL, Schulten K (eds) Models of neural networks, 2nd edn. Springer, Berlin, pp 213–280 (particularly, §7.4)

    Google Scholar 

  • Lamb H (1932) Hydrodynamics, 6th edn. Cambridge University Press, Cambridge. See in particular Sects. 92, 226 ff., 246, 331, and Chaps. 5 and 7

    Google Scholar 

  • Lamperti J (1966) Probability. Benjamin, New York; 2nd edn. (1996) Wiley, New York

    Google Scholar 

  • Lingenheil M (2005) Theorie der Beuteortung beim Krallenfrosch. Diploma thesis, Physik Department T35, Technische Universität München

    Google Scholar 

  • Lowe DA (1987) Single-unit study of lateral line cells in the optic tectum of Xenopus laevis: evidence for bimodal lateral line/optic units. J Comp Neurol 257:396–404

    Article  CAS  PubMed  Google Scholar 

  • Meyer G, Klein A, Mogdans J, Bleckmann H (2012) Toral lateral line units of goldfish, Carassius auratus, are sensitive to the position and vibration direction of a vibrating sphere. J Comp Neurol 198:639–653

    Google Scholar 

  • Mostowski A, Stark M (1964) Introduction to higher algebra. Pergamon, Oxford. Particularly, Chap. 7, §4. This book is a mine of useful information and clear exposition

    Google Scholar 

  • van Netten SM (2006) Hydrodynamic detection by cupulae in a lateral-line canal: functional relations between physics and physiology. Biol Cybern 94:67–85

    Article  PubMed  Google Scholar 

  • Pandya S, Yang Y, Jones DL, Engel J, Liu C (2006) Multisensor processing algorithms for underwater dipole localization and tracking using MEMS artificial lateral-line sensors. EURASIP J Appl Signal Proc 076593

    Google Scholar 

  • Pfister J-P, Toyoizumi T, Barber D, Gerstner W (2006) Optimal spike-timing-dependent plasticity for precise action potential firing in supervised learning. Neural Comput 18:1318–1348

    Article  PubMed  Google Scholar 

  • Pitcher TJ, Patridge TL, Wardle CS (1976) A blind fish can school. Science 194:963–965

    Article  CAS  PubMed  Google Scholar 

  • Plachta DTT, Hanke W, Bleckmann H (2003) A hydrodynamic topographic map in the midbrain of goldfish Carassius auratus. J Exp Biol 206:3479–3486

    Article  PubMed  Google Scholar 

  • Pohlmann K, Grasso FW, Breithaupt T (2001) Tracking wakes: the nocturnal predatory strategy of piscivorous catfish. Proc Natl Acad Sci USA 98:7371–7374

    Article  CAS  PubMed  Google Scholar 

  • Press WH, Teukolsky SA, Vetterling WT, Flanery BP (1995) Numerical recipes in C, 2nd edn. Cambridge University Press, Cambridge; see in particular p. 34 for an explanation of the pseudo-inverse

    Google Scholar 

  • Scheich H, Ebbesson SOE (1983) Multimodal torus in the weakly electric fish Eigenmannia. Springer, Berlin

    Book  Google Scholar 

  • Schlichting H, Gertsen K (2003) Boundary layer theory. Springer, Berlin

    Google Scholar 

  • Schmitz A, Bleckmann H, Mogdans J (2008) Organization of the superficial neuromast system in goldfish, Carassius auratus. J Morphol 269:751–761

    Article  PubMed  Google Scholar 

  • Schnupp JWH, Carr CE (2009) On hearing with more than one ear: lessons from evolution. Nat Neurosci 12(6):692–697

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Schwartz E, Hasler AD (1966) Superficial lateral line sense organs of the mudminnow. Z vergl Physiol 53:317–327

    Article  Google Scholar 

  • Schwarz JS, Reichenbach T, Hudspeth AJ (2011) A hydrodynamic sensory antenna used by killifish for nocturnal hunting. J Exp Biol 214:1857–1866

    Article  PubMed  Google Scholar 

  • Sichert AB, van Hemmen JL (2010) How stimulus shape affects lateral-line perception: analytical approach to analyzing natural stimulus characteristics. Biol Cybern 102:177–180

    Article  PubMed  Google Scholar 

  • Sichert AB, Bamler R, van Hemmen JL (2009) Hydrodynamic object recognition: When multipoles count. Phys Rev Lett 102:058104

    Article  PubMed  Google Scholar 

  • Soares D (2002) An ancient sensory organ in crocodilians. Nature 417:241–242

    Article  CAS  PubMed  Google Scholar 

  • Song J, Fan C, Wang X, Zhang X (2011) A phylogenetic survey of morphological patterns of superficial neuromasts in teleost fish. Brain Behav Evol 78:190

    Google Scholar 

  • Stein BE (ed) (2012) The new handbook of multisensory processing. MIT Press, Cambridge

    Google Scholar 

  • Strelioff D, Honrubia V (1978) Neural transduction in Xenopus laevis lateral-line system. J Neurophysiol 41:432–444

    CAS  PubMed  Google Scholar 

  • Thomas GB (1972) Calculus and analytic geometry, 3rd edn. Addison-Wesley, Reading (§12.6)

    Google Scholar 

  • Tikhonov AN, Arsenin VY (1977) Solutions of ill-posed problems. Winston, Washington

    Google Scholar 

  • Tinsley RC, Kobel HR (eds) (1996) The biology of Xenopus. Oxford University Press, Oxford

    Google Scholar 

  • Udin SB (2007) The instructive role of binocular vision in the Xenopus tectum. Biol Cybern 97:493–503

    Article  PubMed  Google Scholar 

  • Urban S, Vollmayr AN, van Hemmen JL (2014) Hydrodynamic imaging on a 1-dimensional manifold and its inversion in 2-dimensional potential flow. TUM preprint

    Google Scholar 

  • Vanegas H, Ebbeson SOE, Laufer M (1984a) Morphological aspects of the teleostean optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 93–120

    Chapter  Google Scholar 

  • Vanegas H, Williams B, Essayac E (1984b) Electrophysiological and behavioral aspects of the teleostean optic tectum. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New York, pp 121–162

    Chapter  Google Scholar 

  • van der Waerden BL (1969) Mathematical statistics. Springer, Berlin. See Jazayeri and Movshon (2006) for a comprehensive explanation of how references like van der Waerden’s classic may serve theoretical neuroscience

    Google Scholar 

  • Watson GN (1922) A treatise on the theory of Bessel functions (Chaps. 2, 3). Cambridge University Press, Cambridge

    Google Scholar 

  • Yang Y, Chen J, Engel J, Pandya S, Chen N, Tucker C, Coombs S, Jones DL, Liu C (2006) Distant touch hydrodynamic imaging with an artificial lateral line. Proc Natl Acad Sci USA 103:18891–18895

    Article  CAS  PubMed  Google Scholar 

  • Yang Y, Nguyen N, Chen N, Lockwood M, Tucker C, Hu H, Bleckmann H, Liu C, Jones DL (2010) Artificial lateral line with biomimetic neuromasts to emulate fish sensing. Bioinsp Biomim 5:016001

    Article  Google Scholar 

  • Yang Y, Klein A, Bleckmann H, Liu C (2011) Artificial lateral line canal for hydrodynamic detection. Appl Phys Lett 99:023701

    Article  Google Scholar 

  • Zittlau KE, Claas B, Münz H (1986) Directional sensitivity of lateral line units in the clawed toad Xenopus laevis Daudin. J Comp Physiol A 158:469–477

    Article  Google Scholar 

Download references

Acknowledgments

The author sincerely thanks his collaborators over the years on many lateral-line issues: His colleagues, Professors Horst Bleckmann, Jacob Engelmann, and Andreas Elepfandt as well as his former graduate students who have been involved in several projects discussed here; particularly, Drs. Moritz Franosch, Paul Friedel, Julie Goulet, Andy Sichert, and Andreas Vollmayr. Financial support from the BMBF through BCCN—Munich is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Leo van Hemmen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

van Hemmen, J.L. (2014). Hydrodynamic Object Formation: Perception, Neuronal Representation, and Multimodal Integration. In: Bleckmann, H., Mogdans, J., Coombs, S. (eds) Flow Sensing in Air and Water. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41446-6_16

Download citation

Publish with us

Policies and ethics