Skip to main content

Functional Architecture of Lateral Line Afferent Neurons in Larval Zebrafish

  • Chapter
  • First Online:
Flow Sensing in Air and Water

Abstract

Fishes rely on the neuromasts of their lateral line system to detect water flow during behaviors such as predator avoidance and prey localization. While the pattern of neuromast development has been a topic of detailed research, we still do not understand the functional consequences of its organization. Previous work has demonstrated somatotopy in the posterior lateral line, whereby afferent neurons that contact more caudal neuromasts project more dorsally in the hindbrain than those that contact more rostral neuromasts. Recently, patch clamp recordings of posterior lateral line afferent neurons in larval zebrafish (Danio rerio) show that larger cells are born earlier, have a lower input resistance, a lower spontaneous firing rate, and tend to contact multiple neuromasts located closer to the tail than smaller neurons, which are born later, have a higher input resistance, a higher spontaneous firing rate, and tend to contact single neuromasts. These data indicate that early-born neurons are poised to detect large stimuli during the initial stages of development. Later-born neurons are more easily driven to fire and thus likely to be more sensitive to local, weaker flows. Afferent projections onto identified glutamatergic regions in the hindbrain suggest a novel mechanism for lateral line somatotopy, where afferent fibers associated with tail neuromasts respond to stronger stimuli and contact dorsal hindbrain regions associated with Mauthner-mediated escape responses and fast, avoidance swimming. The ability to process flow stimuli by circumventing higher order brain centers would ease the task of processing where speed is of critical importance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alexandre D, Ghysen A (1999) Somatotopy of the lateral line projection in larval zebrafish. Proc Natl Acad Sci USA 96:7558–7562

    Article  CAS  PubMed  Google Scholar 

  • Bennett MR, Pettigrew AG (1974) The formation of synapses in striated muscle during development. J Physiol 241:515–545

    CAS  PubMed  Google Scholar 

  • Bennett MR, Pettigrew AG (1975) The formation of synapses in amphibian striated muscle during development. J Physiol 252:203–239

    CAS  PubMed  Google Scholar 

  • Bhatt DH, McLean DL, Hale ME, Fetcho JR (2007) Grading movement strength by changes in firing intensity versus recruitment of spinal interneurons. Neuron 53:91–102

    Article  CAS  PubMed  Google Scholar 

  • Bleckmann H (2008) Peripheral and central processing of lateral line information. J Comp Physiol A 194:145–158

    Article  CAS  Google Scholar 

  • Brown MC, Jansen JK, Van Essen D (1976) Polyneuronal innervation of skeletal muscle in new-born rats and its elimination during maturation. J Physiol 261:387–422

    CAS  PubMed  Google Scholar 

  • Chagnaud BP, Bleckmann H, Engelmann J (2006) Neural responses of goldfish lateral line afferents to vortex motions. J Exp Biol 209:327–342

    Article  PubMed  Google Scholar 

  • Chiba A, Shepherd D, Murphey RK (1988) Synaptic rearrangement during postembryonic development in the cricket. Science 240:901–905

    Article  CAS  PubMed  Google Scholar 

  • Coombs S (1994) Nearfield detection of dipole sources by the goldfish (Carassius auratus) and the mottled sculpin (Cottus bairdi). J Exp Biol 190:109–129

    CAS  PubMed  Google Scholar 

  • Coombs S, Gorner P, Munz H (eds) (1989) The mechanosensory lateral line: neurobiology and evolution. Springer, New York

    Google Scholar 

  • Coombs S, Mogdans J, Halstead M, Montgomery J (1998) Transformation of peripheral inputs by the first-order lateral line brainstem nucleus. J Comp Physiol A 182:606–626

    Article  CAS  PubMed  Google Scholar 

  • Cope TC, Sokoloff AJ (1999) Orderly recruitment among motoneurons supplying different muscles. J Physiol Paris 93:81–85

    Article  CAS  PubMed  Google Scholar 

  • Dijkgraaf S (1963) The functioning and significance of the lateral-line organs. Biol Rev Camb Philos Soc 38:51–105

    Article  CAS  PubMed  Google Scholar 

  • Eatock RA, Xue J, Kalluri R (2008) Ion channels in mammalian vestibular afferents may set regularity of firing. J Exp Biol 211:1764–1774

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Eaton RC, Bombardieri RA, Meyer DL (1977) The Mauthner-initiated startle response in teleost fish. J Exp Biol 66:65–81

    CAS  PubMed  Google Scholar 

  • Engelmann J, Hanke W, Bleckmann H (2002) Lateral line reception in still- and running water. J Comp Physiol A 188:513–526

    Article  CAS  Google Scholar 

  • Faber DS, Korn H (1975) Inputs from the posterior lateral line nerves upon the goldfish Mauthner cells. II. Evidence that the inhibitory components are mediated by interneurons of the recurrent collateral network. Brain Res 96:349–356

    Article  CAS  PubMed  Google Scholar 

  • Faber DS, Fetcho JR, Korn H (1989) Neuronal networks underlying the escape response in goldfish. General implications for motor control. Ann NY Acad Sci 563:11–33

    Article  CAS  PubMed  Google Scholar 

  • Fame RM, Brajon C, Ghysen A (2006) Second-order projection from the posterior lateral line in the early zebrafish brain. Neural Dev 1:4

    Article  PubMed Central  PubMed  Google Scholar 

  • Faucherre A, Pujol-Marti J, Kawakami K, Lopez-Schier H (2009) Afferent neurons of the zebrafish lateral line are strict selectors of hair-cell orientation. PLoS ONE 4:e4477

    Article  PubMed Central  PubMed  Google Scholar 

  • Fraser SE (1983) Fiber optic mapping of the Xenopus visual system: shift in the retinotectal projection during development. Dev Biol 95:505–511

    Article  CAS  PubMed  Google Scholar 

  • Gaze RM, Keating MJ, Chung SH (1974) The evolution of the retinotectal map during development in Xenopus. Proc R Soc Lond B Biol Sci 185:301–330

    Article  CAS  PubMed  Google Scholar 

  • Gompel N, Dambly-Chaudiere C, Ghysen A (2001) Neuronal differences prefigure somatotopy in the zebrafish lateral line. Development 128:387–393

    CAS  PubMed  Google Scholar 

  • Haehnel M, Taguchi M, Liao JC (2011) Heterogeneity and dynamics of lateral line afferent innervation during development in zebrafish (Danio rerio). J Comp Neurol 520:1376–1386

    Article  Google Scholar 

  • Hatta K, Korn H (1999) Tonic inhibition alternates in paired neurons that set direction of fish escape reaction. Proc Natl Acad Sci USA 96:12090–12095

    Article  CAS  PubMed  Google Scholar 

  • Higashijima S, Mandel G, Fetcho JR (2004) Distribution of prospective glutamatergic, glycinergic, and GABAergic neurons in embryonic and larval zebrafish. J Comp Neurol 480:1–18

    Article  CAS  PubMed  Google Scholar 

  • Hubel DH, Wiesel TN, LeVay S (1977) Plasticity of ocular dominance columns in monkey striate cortex. Philos Trans R Soc Lond B Biol Sci 278:377–409

    Article  CAS  PubMed  Google Scholar 

  • Kinkhabwala A, Riley M, Koyama M, Monen J, Satou C, Kimura Y, Higashijima S, Fetcho J (2010) A structural and functional ground plan for neurons in the hindbrain of zebrafish. Proc Natl Acad Sci USA 108:1164–1169

    Article  Google Scholar 

  • Koyama M, Kinkhabwala A, Satou C, Higashijima S, Fetcho J (2010) Mapping a sensory-motor network onto a structural and functional ground plan in the hindbrain. Proc Natl Acad Sci USA 108:1170–1175

    Article  Google Scholar 

  • Ledent V (2002) Postembryonic development of the posterior lateral line in zebrafish. Development 129:597–604

    CAS  PubMed  Google Scholar 

  • Liao JC (2006) The role of the lateral line and vision on body kinematics and hydrodynamic preference of rainbow trout in turbulent flow. J Exp Biol 209:4077–4090

    Article  PubMed  Google Scholar 

  • Liao JC (2010) Organization and physiology of posterior lateral line afferent neurons in larval zebrafish. Biol Lett 6:402–405

    Article  PubMed Central  PubMed  Google Scholar 

  • Liao JC, Haehnel M (2012) Physiology of afferent neurons in larval zebrafish provides a functional framework for lateral line somatotopy. J Neurophysiol 107:2615–2623

    Article  PubMed  Google Scholar 

  • McCormick CA (1989) Central lateral line mechanosensory pathways in bony fish. Springer, New York

    Google Scholar 

  • McHenry MJ, Strother JA, van Netten SM (2008) Mechanical filtering by the boundary layer and fluid-structure interaction in the superficial neuromast of the fish lateral line system. J Comp Physiol A 194:795–810

    Article  Google Scholar 

  • McHenry MJ, Feitl KE, Strother JA, Van Trump WJ (2009) Larval zebrafish rapidly sense the water flow of a predator’s strike. Biol Lett 477–479

    Google Scholar 

  • McLean DL, Fan J, Higashijima S, Hale ME, Fetcho JR (2007) A topographic map of recruitment in spinal cord. Nature 446:71–75

    Article  CAS  PubMed  Google Scholar 

  • Mirjany M, Faber DS (2011) Characteristics of the anterior lateral line nerve input to the Mauthner cell. J Exp Biol 214:3368–3377

    Article  PubMed  Google Scholar 

  • Montgomery J, Bodznick D, Halstead M (1996) Hindbrain signal processing in the lateral line system of the dwarf scorpionfish Scopeana papillosus. J Exp Biol 199:893–899

    PubMed  Google Scholar 

  • Montgomery J, Carton G, Voigt R, Baker C, Diebel C (2000) Sensory processing of water currents by fishes. Philos Trans R Soc Lond B Biol Sci 355:1325–1327

    Article  CAS  PubMed  Google Scholar 

  • Montgomery JC, McDonald F, Baker CF, Carton AG, Ling N (2003) Sensory integration in the hydrodynamic world of rainbow trout. Proc Roy Soc Lond B 270(Suppl 2):S195–S197

    Article  Google Scholar 

  • Mueller T, Wullimann MF (2005) Atlas of early zebrafish brain development: a tool for molecular neurogenetics, 1st edn. Elsevier, Amsterdam

    Google Scholar 

  • Nagiel A, Andor-Ardo D, Hudspeth AJ (2008) Specificity of afferent synapses onto plane-polarized hair cells in the posterior lateral line of the zebrafish. J Neurosci 28:8442–8453

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • New JG, Coombs S, McCormick CA, Oshel PE (1996) Cytoarchitecture of the medial octavolateralis nucleus in the goldfish, Carassius auratus. J Comp Neurol 366:534–546

    Article  CAS  PubMed  Google Scholar 

  • Nicolson T, Rusch A, Friedrich RW, Granato M, Ruppersberg JP, Nusslein-Volhard C (1998) Genetic analysis of vertebrate sensory hair cell mechanosensation: the zebrafish circler mutants. Neuron 20:271–283

    Article  CAS  PubMed  Google Scholar 

  • Plachta DT, Hanke W, Bleckmann H (2003) A hydrodynamic topographic map in the midbrain of goldfish Carassius auratus. J Exp Biol 206:3479–3486

    Article  PubMed  Google Scholar 

  • Pujol-Marti J, Baudoin JP, Faucherre A, Kawakami K, Lopez-Schier H (2010) Progressive neurogenesis defines lateralis somatotopy. Dev Dyn 239:1919–1930

    Article  CAS  PubMed  Google Scholar 

  • Pujol-Marti J, Zecca A, Baudoin JP, Faucherre A, Asakawa K, Kawakami K, Lopez-Schier H (2012) Neuronal birth order identifies a dimorphic sensorineural map. J Neurosci 32:2976–2987

    Article  CAS  PubMed  Google Scholar 

  • Raible DW, Kruse GJ (2000) Organization of the lateral line system in embryonic zebrafish. J Comp Neurol 421:189–198

    Article  CAS  PubMed  Google Scholar 

  • Sarrazin AF, Nunez VA, Sapede D, Tassin V, Dambly-Chaudiere C, Ghysen A (2010) Origin and early development of the posterior lateral line system in zebrafish. J Neurosci 30:8234–8244

    Article  CAS  PubMed  Google Scholar 

  • Sato T, Takahoko M, Okamoto H (2006) HuC:Kaede, a useful tool to label neural morphologies in networks in vivo. Genesis 44:136–142

    Article  CAS  PubMed  Google Scholar 

  • Sato A, Koshida S, Takeda H (2010) Single-cell analysis of somatotopic map formation in the zebrafish lateral line system. Dev Dyn 239:2058–2065

    Article  CAS  PubMed  Google Scholar 

  • Schellart NA, Kroese AB (2002) Conduction velocity compensation for afferent fiber length in the trunk lateral line of the trout. J Comp Physiol A 188:561–576

    Article  CAS  Google Scholar 

  • Thompson WJ (1985) Activity and synapse elimination at the neuromuscular junction. Cell Mol Neurobiol 5:167–182

    Article  CAS  PubMed  Google Scholar 

  • Trapani JG, Nicolson T (2011) Mechanism of spontaneous activity in afferent neurons of the zebrafish lateral-line organ. J Neurosci 31:1614–1623

    Article  CAS  PubMed Central  PubMed  Google Scholar 

Download references

Acknowledgments

I would like to thank members of my laboratory who helped with various phases of this work, from data collection and analyses to fish care.

Disclosures This work was supported by NIH RO1DC010809 and NSF IOS 1257150 to James C. Liao. The author declares no conflicting competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to James C. Liao .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liao, J.C. (2014). Functional Architecture of Lateral Line Afferent Neurons in Larval Zebrafish. In: Bleckmann, H., Mogdans, J., Coombs, S. (eds) Flow Sensing in Air and Water. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41446-6_13

Download citation

Publish with us

Policies and ethics