Skip to main content

Evolution of Polarized Hair Cells in Aquatic Vertebrates and Their Connection to Directionally Sensitive Neurons

  • Chapter
  • First Online:

Abstract

The mechanosensory hair cells enable aquatic vertebrates to maintain body position with respect to gravity, as well as to detect a wide variety of hydrodynamic (including hydroacoustic) stimuli. The evolution of hair-cell bearing sensory organs has been driven by the physical properties of the medium, which directs the adaptation of their molecular developmental program to extract information from different stimuli. Mutation and selection have shaped hair cell bearing organs to extract information about the distance, size, and movement direction to elicit motor behaviors, including avoidance, approach, or schooling in fish swarms. Here we will review some molecular, cellular, and developmental steps that outline a plausible evolution of hair cells and their use as hydrodynamic sensors in aquatic vertebrates. We suggest an evolutionary progression (from simple to complex) through multiplication of genes of the mechanosensory hair cell followed by cellular and organ diversification. We posit that this cell evolved, through morphological intermediates, which transformed the kinocilium surrounded by microvilli of the unicellular ancestor of metazoans into the polarized stereocilia of vertebrate hair cells. Anaxonic sensory cells of vertebrates have evolved, after an ancestral gene duplication, into both neurons and hair cells. Evolution of novel genes allowed the formation of discrete sensory organs such as the inner ear and the lateral line. An interesting but incompletely understood aspect of this evolution is the generation of hair-cell polarization and their distribution within sensory epithelia and their innervation.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Arendt D (2003) Evolution of eyes and photoreceptor cell types. Int J Dev Biol 47(7–8):563–571

    PubMed  Google Scholar 

  • Arendt D (2005) Genes and homology in nervous system evolution: comparing gene functions, expression patterns, and cell type molecular fingerprints. Theory Biosci 124(2):185–197

    CAS  PubMed  Google Scholar 

  • Arkett SA, Mackie GO, Meech RW (1988) Hair cell mechanoreception in a jellyfish Aglantha digitale. J Exp Biol 135:329–342

    Google Scholar 

  • Beraneck M, Straka H (2011) Vestibular signal processing by separate sets of neuronal filters. J Vestib Res 21(1):5–19

    PubMed  Google Scholar 

  • Bermingham NA, Hassan BA, Price SD, Vollrath MA, Ben-Arie N, Eatock RA, Bellen HJ, Lysakowski A, Zoghbi HY (1999) Math1: an essential gene for the generation of inner ear hair cells. Science 284(5421):1837–1841

    Article  CAS  PubMed  Google Scholar 

  • Bermingham NA, Hassan BA, Wang VY, Fernandez M, Banfi S, Bellen HJ, Fritzsch B, Zoghbi HY (2001) Proprioceptor pathway development is dependent on Math1. Neuron 30(2):411–422

    Article  CAS  PubMed  Google Scholar 

  • Bleckmann H, Budelmann BU, Bullock TH (1991) Peripheral and central nervous responses evoked by small water movements in a cephalopod. J Comp Physiol [A] 168(2):247–257

    Article  CAS  Google Scholar 

  • Bouchard M, de Caprona D, Busslinger M, Xu P, Fritzsch B (2010) Pax2 and Pax8 cooperate in mouse inner ear morphogenesis and innervation. BMC Dev Biol 10:89

    Article  PubMed Central  PubMed  Google Scholar 

  • Braun CB, Northcutt RG (1997) The lateral line system of hagfishes (Craniata: Myxinoidea). Acta Zoologica 3:247–268

    Article  Google Scholar 

  • Budelmann B (1992) Hearing in Nonarthropod Invertebrates. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 141–155

    Chapter  Google Scholar 

  • Budelmann BU, Bleckmann H (1988) A lateral line analogue in cephalopods: water waves generate microphonic potentials in the epidermal head lines of Sepia and Lolliguncula. J Comp Physiol [A] 164(1):1–5

    Article  CAS  Google Scholar 

  • Bullock TH, Heiligenberg W (1986) Electroreception. Wiley and Sons, New York

    Google Scholar 

  • Burighel P, Caicci F, Manni L (2011) Hair cells in non-vertebrate models: lower chordates and molluscs. Hear Res 273(1–2):14–24

    Article  CAS  PubMed  Google Scholar 

  • Candiani S, Moronti L, De Pietri Tonelli D, Garbarino G, Pestarino M (2011) A study of neural-related microRNAs in the developing amphioxus. Evodevo 2:15

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Chen P, Johnson JE, Zoghbi HY, Segil N (2002) The role of Math1 in inner ear development: uncoupling the establishment of the sensory primordium from hair cell fate determination. Development 129(10):2495–2505

    CAS  PubMed  Google Scholar 

  • Christophorou NA, Mende M, Lleras-Forero L, Grocott T, Streit A (2010) Pax2 coordinates epithelial morphogenesis and cell fate in the inner ear. Dev Biol 345:180–190

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Czerny T, Halder G, Kloter U, Souabni A, Gehring WJ, Busslinger M (1999) Twin of eyeless, a second Pax-6 gene of Drosophila, acts upstream of eyeless in the control of eye development. Mol Cell 3(3):297–307

    Article  CAS  PubMed  Google Scholar 

  • Dabdoub A, Kelley MW (2005) Planar cell polarity and a potential role for a Wnt morphogen gradient in stereociliary bundle orientation in the mammalian inner ear. J Neurobiol 64(4):446–457

    Article  CAS  PubMed  Google Scholar 

  • Denton EJ, Gray J (1983) Mechanical factors in the excitation of clupeid lateral lines. Proc R Soc Lond B Biol Sci 218(1210):1–26

    Article  CAS  PubMed  Google Scholar 

  • Duncan JS, Fritzsch B (2012a) Evolution of Sound & Balance Perception: innovations that aggregate single hair cells into the ear and transform a gravistatic sensor into the organ of Corti. J Anatomy 295:1760–1774

    Google Scholar 

  • Duncan JS, Fritzsch B (2012b) Transforming the vestibular system one molecule at a time: the molecular and developmental basis of vertebrate auditory evolution. Adv Exp Med Biol 739:173–186

    Article  CAS  PubMed  Google Scholar 

  • Fairclough SR, Chen Z, Kramer E, Zeng Q, Young S, Robertson HM, Begovic E, Richter DJ, Russ C, Westbrook MJ, Manning G, Lang BF, Haas B, Nusbaum C, King N (2013) Premetazoan genome evolution and the regulation of cell differentiation in the choanoflagellate Salpingoeca rosetta. Genome Biol 14(2):R15

    Article  PubMed  Google Scholar 

  • Faucherre A, Pujol-Marti J, Kawakami K, Lopez-Schier H (2009) Afferent neurons of the zebrafish lateral line are strict selectors of hair-cell orientation. PLoS ONE 4(2):e4477

    Article  PubMed Central  PubMed  Google Scholar 

  • Flock A, Wersall J (1962) A study of the orientation of the sensory hairs of the receptor cells in the lateral line organ of fish, with special reference to the function of the receptors. J Cell Biol 15:19–27

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B (1981a) Electroreceptors and direction specific arrangement in the lateral-line system of salamanders. Z Naturforsch 36:493–495

    Google Scholar 

  • Fritzsch B (1981b) The pattern of lateral-line afferents in urodeles. A horseradish- peroxidase study. Cell Tissue Res 218(3):581–594

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B (1990) On the coincidence of loss of electroreception and reorganization of brain stem nuclei. In: Finlay B, Innocenti GM, Scheich H (eds) The neocortex: ontogeny and phylogeny. Plenum Press, London, pp 103–109

    Google Scholar 

  • Fritzsch B (1992) The water-to-land transition: evolution of the tetrapod basilar papilla, middle ear and auditory nuclei. In: Webster DB, Fay RR, Popper AN (eds) The evolutionary biology of hearing. Springer, New York, pp 351–375

    Chapter  Google Scholar 

  • Fritzsch B (1996) Similarities and differences in lancelet and craniate nervous systems. Isr J Zool 42:147–160

    Google Scholar 

  • Fritzsch B, Glover JC (2007) Evolution of the deuterostome central nervous system: an intercalation of developmental patterning processes with cellular specification processes. In: Kaas JH (ed) Evolution of nervous systems, vol 2. Academic Press, Oxford, pp 1–24

    Chapter  Google Scholar 

  • Fritzsch B, Tessarollo L, Coppola E, Reichardt LF (2004) Neurotrophins in the ear: their roles in sensory neuron survival and fiber guidance. Prog Brain Res 146:265–278

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Gregory D, Rosa-Molinar E (2005a) The development of the hindbrain afferent projections in the axolotl: evidence for timing as a specific mechanism of afferent fiber sorting. Zoology (Jena) 108(4):297–306

    Article  Google Scholar 

  • Fritzsch B, Matei VA, Nichols DH, Bermingham N, Jones K, Beisel KW, Wang VY (2005b) Atoh1 null mice show directed afferent fiber growth to undifferentiated ear sensory epithelia followed by incomplete fiber retention. Dev Dyn 233(2):570–583

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Fritzsch B, Beisel KW, Hansen LA (2006a) The molecular basis of neurosensory cell formation in ear development: a blueprint for hair cell and sensory neuron regeneration? Bioessays 28(12):1181–1193

    Article  CAS  PubMed  Google Scholar 

  • Fritzsch B, Pauley S, Feng F, Matei V, Nichols DH (2006b) The evolution of the vertebrate auditory system: transformations of vestibular mechanosensory cells for sound processing is combined with newly generated central processing neurons. Int J Comp Psychol 19:1–24

    Google Scholar 

  • Fritzsch B, Beisel KW, Pauley S, Soukup G (2007) Molecular evolution of the vertebrate mechanosensory cell and ear. Int J Dev Biol 51(6–7):663–678

    Article  CAS  PubMed  Google Scholar 

  • Gehring WJ (2011) Chance and necessity in eye evolution. Genome Biol Evol 3:1053–1066

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Hans S, Irmscher A, Brand M (2013) Zebrafish Foxi1 provides a neuronal ground state during inner ear induction preceding the Dlx3b/4b-regulated sensory lineage. Development 140(9):1936–1945

    Article  CAS  PubMed  Google Scholar 

  • Hassan BA, Bellen HJ (2000) Doing the MATH: is the mouse a good model for fly development? Genes Dev 14(15):1852–1865

    CAS  PubMed  Google Scholar 

  • Hertzano R, Montcouquiol M, Rashi-Elkeles S, Elkon R, Yucel R, Frankel WN, Rechavi G, Moroy T, Friedman TB, Kelley MW, Avraham KB (2004) Transcription profiling of inner ears from Pou4f3(ddl/ddl) identifies Gfi1 as a target of the Pou4f3 deafness gene. Hum Mol Genet 13(18):2143–2153

    Article  CAS  PubMed  Google Scholar 

  • Jahan I, Pan N, Kersigo J, Fritzsch B (2010) Neurod1 suppresses hair cell differentiation in ear ganglia and regulates hair cell subtype development in the cochlea. PLoS ONE 5(7):e11661

    Article  PubMed Central  PubMed  Google Scholar 

  • Jahan I, Pan N, Kersigo J, Calisto LE, Morris KA, Kopecky B, Duncan JS, Beisel KW, Fritzsch B (2012) Expression of Neurog1 instead of Atoh1 can partially rescue organ of Corti cell survival. PLoS ONE 7(1):e30853

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Jorgensen JM (1989) Evolution of octavolateralis sensory cells. In: Coombs S, Goerner P, Muenz H (eds) The mechanosensory lateral line. Neurobiology and evolution. Springer, New York, pp 99–115

    Google Scholar 

  • Joyce Tang W, Chen JS, Zeller RW (2013) Transcriptional regulation of the peripheral nervous system in Ciona intestinalis. Dev Biol 378:183–193

    Article  CAS  PubMed  Google Scholar 

  • Kalmijn AJ (1988) Electromagnetic orientation: a relativistic approach. Prog Clin Biol Res 257:23–45

    CAS  PubMed  Google Scholar 

  • Kelley MW, Driver EC, Puligilla C (2009) Regulation of cell fate and patterning in the developing mammalian cochlea. Curr Opin Otolaryngol Head Neck Surg 17(5):381–387

    Article  PubMed Central  PubMed  Google Scholar 

  • Kelly M, Chen P (2007) Shaping the mammalian auditory sensory organ by the planar cell polarity pathway. Int J Dev Biol 51(6–7):535–547

    Article  CAS  PubMed  Google Scholar 

  • Kozmik Z, Daube M, Frei E, Norman B, Kos L, Dishaw LJ, Noll M, Piatigorsky J (2003) Role of pax genes in eye evolution. A cnidarian PaxB gene uniting Pax2 and Pax6 functions. Dev Cell 5(5):773–785

    Article  CAS  PubMed  Google Scholar 

  • Lambert FM, Combes D, Simmers J, Straka H (2012) Gaze stabilization by efference copy signaling without sensory feedback during vertebrate locomotion. Curr Biol 22(18):1649–1658

    Article  CAS  PubMed  Google Scholar 

  • Lewis ER, Fay RR (2004) Environmental variables and the fundamental nature of hearing. In: Manley GA, Popper AN, Fay RR (eds) Evolution of the vertebrate auditory system. Springer, New York, pp 27–54

    Chapter  Google Scholar 

  • Lewis ER, Leverenz EL, Bialek WS (1985) The vertebrate inner ear. CRC Press, Boca Raton

    Google Scholar 

  • Loktev AV, Zhang Q, Beck JS, Searby CC, Scheetz TE, Bazan JF, Slusarski DC, Sheffield VC, Jackson PK, Nachury MV (2008) A BBSome subunit links ciliogenesis, microtubule stability, and acetylation. Dev Cell 15(6):854–865

    Article  CAS  PubMed  Google Scholar 

  • Loosli F, Kmita-Cunisse M, Gehring WJ (1996) Isolation of a Pax-6 homolog from the ribbonworm Lineus sanguineus. Proc Natl Acad Sci U S A 93(7):2658–2663

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Schier H, Hudspeth AJ (2005) Supernumerary neuromasts in the posterior lateral line of zebrafish lacking peripheral glia. Proc Natl Acad Sci U S A 102(5):1496–1501

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Schier H, Hudspeth AJ (2006) A two-step mechanism underlies the planar polarization of regenerating sensory hair cells. Proc Natl Acad Sci U S A 103(49):18615–18620

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Lopez-Schier H, Starr CJ, Kappler JA, Kollmar R, Hudspeth AJ (2004) Directional cell migration establishes the axes of planar polarity in the posterior lateral-line organ of the zebrafish. Dev Cell 7(3):401–412

    Article  CAS  PubMed  Google Scholar 

  • Maklad A, Kamel S, Wong E, Fritzsch B (2010) Development and organization of polarity-specific segregation of primary vestibular afferent fibers in mice. Cell Tissue Res 340(2):303–321

    Article  PubMed Central  PubMed  Google Scholar 

  • Markl H (1974) The perception of gravity and of angular acceleration in invertebrates. In: Kornhuber HH (ed) Handbook of sensory physiology, vol VI/1 vestibular system. Springer, Berlin, pp 17–74

    Google Scholar 

  • Matei V, Pauley S, Kaing S, Rowitch D, Beisel KW, Morris K, Feng F, Jones K, Lee J, Fritzsch B (2005) Smaller inner ear sensory epithelia in Neurog 1 null mice are related to earlier hair cell cycle exit. Dev Dyn 234(3):633–650

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Northcutt RG (1988) The phylogenetic distribution and innervation of craniate mechanoreceptive lateral lines. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, Heidelberg, pp 17–78

    Google Scholar 

  • Northcutt RG, Brandle K, Fritzsch B (1995) Electroreceptors and mechanosensory lateral line organs arise from single placodes in axolotls. Dev Biol 168(2):358–373

    Article  CAS  PubMed  Google Scholar 

  • O’Neill P, Mak SS, Fritzsch B, Ladher RK, Baker CVH (2012) The amniote paratympanic organ develops from a previously undiscovered sensory placode. Nat commun 3:1041

    Google Scholar 

  • Pan N, Jahan I, Kersigo J, Kopecky B, Santi P, Johnson S, Schmitz H, Fritzsch B (2011) Conditional deletion of Atoh1 using Pax2-Cre results in viable mice without differentiated cochlear hair cells that have lost most of the organ of Corti. Hear Res 275(1–2):66–80

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pan N, Jahan I, Kersigo J, Duncan J, Kopecky B, Fritzsch B (2012a) A novel Atoh1 ``self-terminating” mouse model reveals the necessity of proper Atoh1 expression level and duration for inner ear hair cell differentiation and viability. PLoS ONE 7(1):e30358

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Pan N, Kopecky B, Jahan I, Fritzsch B (2012b) Understanding the evolution and development of neurosensory transcription factors of the ear to enhance therapeutic translation. Cell Tissue Res 349:415–432

    Article  PubMed Central  PubMed  Google Scholar 

  • Pfeffer PL, Bouchard M, Busslinger M (2000) Pax2 and homeodomain proteins cooperatively regulate a 435 bp enhancer of the mouse Pax5 gene at the midbrain-hindbrain boundary. Development 127(5):1017–1028

    CAS  PubMed  Google Scholar 

  • Pierce ML, Weston MD, Fritzsch B, Gabel HW, Ruvkun G, Soukup GA (2008) MicroRNA-183 family conservation and ciliated neurosensory organ expression. Evol Dev 10(1):106–113

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Punzo C, Plaza S, Seimiya M, Schnupf P, Kurata S, Jaeger J, Gehring WJ (2004) Functional divergence between eyeless and twin of eyeless in Drosophila melanogaster. Development 131(16):3943–3953

    Article  CAS  PubMed  Google Scholar 

  • Repass JJ, Watson GM (2001) Anemone repair proteins as a potential therapeutic agent for vertebrate hair cells: facilitated recovery of the lateral line of blind cave fish. Hear Res 154(1–2):98–107

    Article  CAS  PubMed  Google Scholar 

  • Sapede D, Dyballa S, Pujades C (2012) Cell lineage analysis reveals three different progenitor pools for neurosensory elements in the otic vesicle. J Neurosci 32(46):16424–16434

    Article  CAS  PubMed  Google Scholar 

  • Schlosser G (2010) Making senses development of vertebrate cranial placodes. Int Rev Cell Mol Biol 283:129–234

    Article  CAS  PubMed  Google Scholar 

  • Schwander M, Kachar B, Muller U (2010) Review series: the cell biology of hearing. J Cell Biol 190(1):9–20

    Article  CAS  PubMed  Google Scholar 

  • Seipel K, Yanze N, Schmid V (2004) Developmental and evolutionary aspects of the basic helix-loop-helix transcription factors Atonal-like 1 and Achaete-scute homolog 2 in the jellyfish. Dev Biol 269(2):331–345

    Article  CAS  PubMed  Google Scholar 

  • Senthilan PR, Piepenbrock D, Ovezmyradov G, Nadrowski B, Bechstedt S, Pauls S, Winkler M, Mobius W, Howard J, Gopfert MC (2012) Drosophila auditory organ genes and genetic hearing defects. Cell 150(5):1042–1054

    Article  CAS  PubMed  Google Scholar 

  • Short S, Kozmik Z, Holland LZ (2012) The function and developmental expression of alternatively spliced isoforms of amphioxus and Xenopus laevis Pax2/5/8 genes: revealing divergence at the invertebrate to vertebrate transition. J Exp Zool B Mol Dev Evol 318(7):555–571

    Article  CAS  PubMed  Google Scholar 

  • Soukup GA, Fritzsch B, Pierce ML, Weston MD, Jahan I, McManus MT, Harfe BD (2009) Residual microRNA expression dictates the extent of inner ear development in conditional Dicer knockout mice. Dev Biol 328(2):328–341

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Straka H, Lambert FM, Pfanzelt S, Beraneck M (2009) Vestibulo-ocular signal transformation in frequency-tuned channels. Ann N Y Acad Sci 1164:37–44

    Article  PubMed  Google Scholar 

  • Streit A (2007) The preplacodal region: an ectodermal domain with multipotential progenitors that contribute to sense organs and cranial sensory ganglia. Int J Dev Biol 51(6–7):447–461

    Article  CAS  PubMed  Google Scholar 

  • Szentagothai J (1950) The elementary vestibulo-ocular reflex arc. J Neurophysiol 13(6):395–407

    CAS  PubMed  Google Scholar 

  • Tayeh MK, Yen HJ, Beck JS, Searby CC, Westfall TA, Griesbach H, Sheffield VC, Slusarski DC (2008) Genetic interaction between Bardet-Biedl syndrome genes and implications for limb patterning. Hum Mol Genet 17(13):1956–1967

    Article  CAS  PubMed  Google Scholar 

  • Torres M, Giraldez F (1998) The development of the vertebrate inner ear. Mech Dev 71(1–2):5–21

    Article  CAS  PubMed  Google Scholar 

  • Vopalensky P, Pergner J, Liegertova M, Benito-Gutierrez E, Arendt D, Kozmik Z (2012) Molecular analysis of the amphioxus frontal eye unravels the evolutionary origin of the retina and pigment cells of the vertebrate eye. Proc Natl Acad Sci U S A 109(38):15383–15388

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Wallis D, Hamblen M, Zhou Y, Venken KJ, Schumacher A, Grimes HL, Zoghbi HY, Orkin SH, Bellen HJ (2003) The zinc finger transcription factor Gfi1, implicated in lymphomagenesis, is required for inner ear hair cell differentiation and survival. Development 130(1):221–232

    Article  CAS  PubMed  Google Scholar 

  • Wang VY, Hassan BA, Bellen HJ, Zoghbi HY (2002) Drosophila atonal fully rescues the phenotype of Math1 null mice: new functions evolve in new cellular contexts. Curr Biol 12(18):1611–1616

    Article  CAS  PubMed  Google Scholar 

  • Wibowo I, Pinto-Teixeira F, Satou C, Higashijima S, Lopez-Schier H (2012) Compartmentalized Notch signaling sustains epithelial mirror symmetry. Development 138(6):1143–1152

    Article  Google Scholar 

  • Yang T, Kersigo J, Jahan I, Pan N, Fritzsch B (2011) The molecular basis of making spiral ganglion neurons and connecting them to hair cells of the organ of Corti. Hear Res 278(1–2):21–33

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  • Zittlau KE, Claas B, Munz H, Gorner P (1985) Multisensory interaction in the torus semicircularis of the clawed toad Xenopus laevis. Neurosci Lett 60(1):77–81

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work was supported by NIH grants R01 DC 005590 (BF) and P30 DC 010362 (BF) to BF, and by the European Research Council Starting Grant “Sensorineural” to HLS. We express our thanks to the Roy. J. Carver foundation for the purchase of the Leica TCS SP5 confocal microscope and the Office of the Vice President for Research for support. We wish to express our gratitude to the organizers of the lateral line symposium, in particular H. Bleckmann and S. Coombs for helping us streamlining this presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hernán López-Schier .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Fritzsch, B., López-Schier, H. (2014). Evolution of Polarized Hair Cells in Aquatic Vertebrates and Their Connection to Directionally Sensitive Neurons. In: Bleckmann, H., Mogdans, J., Coombs, S. (eds) Flow Sensing in Air and Water. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41446-6_11

Download citation

Publish with us

Policies and ethics