Skip to main content

Lateral Line Morphology and Development and Implications for the Ontogeny of Flow Sensing in Fishes

  • Chapter
  • First Online:

Abstract

This chapter considers the morphological diversity of lateral line canals and neuromast receptor organs among fishes and how the pattern and timing of lateral line development can inform an understanding of the ontogeny of flow sensing. The morphology (and presumably the function) of the lateral line system changes considerably as a fish develops. Morphogenesis of the lateral line system starts before hatch and continues through the larval and juvenile stages, and thus, may take up to several months to complete during which fish size increases considerably. The appropriate course and timing of the development are critical for the development of feeding, swimming, and predator avoidance behaviors, and the ability to orient to environmental flows, which all ensure survival of young fishes. It is predicted that lateral line function, and thus flow sensing, is affected by a combination of both ontogenetic changes in the morphology of the lateral line system and the nature of the changing hydrodynamic regime in which a developing fish lives. Several aspects of lateral line development are predicted to have important effects on the functional ontogeny of the system: (1) increase in neuromast number, (2) changes in the relative number of superficial and canal neuromasts (CN), (3) changes in neuromast morphology (size, shape, hair cell number), and (4) variation in the pattern and timing of canal development.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  • Appelbaum S, Schemmel C (1983) Dermal sense organs and their significance in the feeding behaviour of the common sole Solea vulgaris. Mar Ecol Prog Ser 13:36–39

    Article  Google Scholar 

  • Asaoka R, Nakae M, Sasaki K (2011a) Description and innervation of the lateral line system in two gobioids, Odontobutis obscura and Pterobobius elapoides (Teleostei: Perciformes). Ichthyol Res 58:51–61

    Article  Google Scholar 

  • Asaoka R, Nakae M, Sasaki K (2011b) The innervation and adaptive significance of extensively distributed neuromasts in Glossogobius olivaceus (Perciformes: Gobiidae). Ichthyol Res 59:143–150

    Article  Google Scholar 

  • Blaxter JHS (1987) Structure and development of the lateral line. Biol Rev 62:471–514

    Google Scholar 

  • Blaxter JHS (1991) Sensory systems and behavior of larval fish. In: Mauchline J, Nemoto T (eds) Marine biology—its accomplishments and future prospect. Hokusensha, Tokyo, pp 15–38

    Google Scholar 

  • Blaxter JHS, Fuiman LA (1989) Function of the free neuromasts of marine teleost larvae. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 481–499

    Chapter  Google Scholar 

  • Chitnis AJ, Nogare DD, Matsuda M (2011) Building the posterior lateral line system in zebrafish. Dev Neurobiol 72:234–255

    Article  Google Scholar 

  • Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: phylogenetic, and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, pp 553–593

    Chapter  Google Scholar 

  • Dambly-Chaudière C, Sapede D, Soubiran F, Decorde K, Gompel N, Ghysen A (2003) The lateral line of zebrafish: a model system for the analysis of morphogenesis and neural development in vertebrates. Biol Cell 95:579–587

    Article  PubMed  Google Scholar 

  • Diaz JP, Prié-Granié M, Kentouri M, Varsamos S, Connes R (2003) Development of the lateral line system in the sea bass. J Fish Biol 62:24–40

    Article  Google Scholar 

  • Disler NN (1971) Lateral line sense organs and their importance in fish behavior. Israel Program for Scientific Translations, Jerulalem, p 328

    Google Scholar 

  • Faucher K, Aubert A, Lagardére J-P (2003) Spatial distribution and morphological characteristics of the trunk lateral line neuromasts of the sea bass (Dicentrarchus labrax, L; Teleostei, Serranidae). Brain Behav Evol 62:223–232

    Article  PubMed  Google Scholar 

  • Faucher K, Lagardére J-P, Aubert A (2005) Quantitative aspects of the spatial distribution and morphological characteristics of the sea bass (Dicentrarchus labrax L.; Teleostei, Serranidae) trunk lateral line neuromasts. Brain Behav Evol 65:231–243

    Article  PubMed  Google Scholar 

  • Flock A (1965a) Electron microscopic and electrophysiological studies on the lateral line canal organ. Acta Otolaryngologica Supplementum S199:7–90

    Google Scholar 

  • Fuiman LA, Higgs DM, Poling KR (2004) Changing structure and function of the ear and lateral line system of fishes during development. Amer Fish Soc Symp 40:117–144

    Google Scholar 

  • Garman S (1899) Reports on an exploration off the west coasts of Mexico, Central and South America, and off the Galapogos Islands, in charge of Alexander Agassiz, by the US fish commission steamer “Albatross” during 1891, Lieut. Commander Z.L. Tanner, USN, Commanding. XXVI—the fishes. Mem Mus Comp Zool 24:1–431 + 97 plates

    Google Scholar 

  • Gillis JA, Modrell MS, Northcutt RG, Catania KC, Luer C, Baker CVH (2012) Electrosensory ampullary organs are derived from lateral line placodes in cartilaginous fishes. Devel 139:3142–3146

    CAS  Google Scholar 

  • Gilmour D, Knaut H, Maischein HM, Nusslein-Volhard C (2004) Towing of sensory axons by their migrating target cells in vivo. Nat Neurosci 7:491–492

    Article  CAS  PubMed  Google Scholar 

  • Higgs DM, Fuiman LA (1996) Ontogeny of visual and mechanosensory structure and function in Atlantic menhaden Brevoortia tyrannus. J Exper Biol 199:2619–2629

    Google Scholar 

  • Hoss DE, Blaxter JHS (1982) Development and function of the swimbladder-inner ear-lateral line system in the Atlantic menhaden, Brevoortia tyrannus (Latrobe). J Fish Biol 20:131–142

    Article  Google Scholar 

  • Jakubowski M (1963) Cutaneous sense organs of fishes. I. The lateral-line organs in the stone-perch (Acerina cernua L.). Acta Biologica Cracoviensia Ser Zoologia 6:59–78

    Google Scholar 

  • Jakubowski M (1966) Cutaneous sense organs of fishes. V. Canal system of lateral-line organs in Mullus barbatus ponticus Essipov and Spicara smaris L. (topography, innervation, structure). Acta Biologica Cracoviensia Ser Zoologia 9:225–237

    Google Scholar 

  • Jakubowski M (1967) Cutaneous sense organs of fishes. Part VII. The structure of the system of lateral-line canal organs in the Percidae. Acta Biologica Cracoviensia Ser Zoologia 10:69–81

    Google Scholar 

  • Jakubowski M (1974) Structure of the lateral-line canal system and related bones in the berycoid fish Hoplostethus mediteranneus Cuv. et Val. (Trachichthyidae, Pisces). Acta Anat 87:261–274

    Article  CAS  PubMed  Google Scholar 

  • Janssen J, Coombs S, Hoekstra D, Platt C (1987) Anatomy and differential growth of the lateral line system of the mottled sculpin, Cottus bairdi (Scorpaeniformes: Cottidae). Brain Behav Evol 30:210–229

    CAS  PubMed  Google Scholar 

  • Kawamura G, Masuma S, Tezuka N, Koiso M, Jinbo T, Namba K (2003) Morphogenesis of sense organs in the bluefin tuna Thunnus orientalis. In: Browman HI, Skiftesvik AB (eds) The fish big bang, 26th annual larval fish conference. Institute of Marine Research, Bergen, Norway, pp 123–135

    Google Scholar 

  • Leis JM (2006) Are larvae of demersal fishes plankton or nekton? Adv Mar Biol 51:57–141

    PubMed  Google Scholar 

  • Leis JM, Hay AC, Trnski T (2006) In situ ontogeny of behavior in pelagic larvae of three temperate, marine, demersal fishes. Mar Biol 148:655–669

    Article  Google Scholar 

  • Leis JM, Hay AC, Lockett MM, Chen J-P, Fang L-S (2007) Ontogeny of swimming speed in larvae of pelagic-spawning, tropical, marine fishes. Mar Ecol Prog Ser 349:257–269

    Article  Google Scholar 

  • Lekander B (1949) The sensory line system and the canal bones in the head of some Ostariophysi. Acta Zool 30:1–131

    Article  Google Scholar 

  • Liao JC, Haehnel M (2012) Physiology of afferent neurons in larval zebrafish provides a functional framework for lateral line somatotopy. J Neurophys 107:2615–2623

    Article  Google Scholar 

  • López-Shier H, Starr CJ, Kappler FA, Kollmar R, Hudspeth AJ (2004) Directional cell migration establishes the axes of planar polarity in the posterior lateral-line organ of the zebrafish. Devel Cell 7:401–412

    Article  Google Scholar 

  • Marshall NJ (1965) Systematic and biological studies of the Macrourid fishes (Anacanthini-Teleostii). Deep Sea Res 12:299–322

    Google Scholar 

  • Marshall NJ (1986) Structure and general distribution of free neuromasts in the black goby, Gobius niger. J Mar Biol Assoc UK 66:323–333

    Article  Google Scholar 

  • Marshall NJ (1996) The lateral line systems of three deep-sea fish. J Fish Biol 49:239–258 (Suppl)

    Article  Google Scholar 

  • Metcalfe WK (1989) Organization and development of the zebrafish posterior lateral line. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 147–159

    Chapter  Google Scholar 

  • Mogdans J, Bleckmann H (2012) Coping with flow: behavior, neurophysiology and modeling of the fish lateral line system. Biol Cyber 106:627–642

    Article  Google Scholar 

  • Moore GA, Burris WE (1956) Description of the lateral-line system of the pirate perch, Aphredoderus sayanus. Copeia 1956:18–20

    Article  Google Scholar 

  • Mukai Y, Kobayashki H (1992) Cupular growth rate of free neuromasts in three species of cyprinid fish. Nippon Suisan Gakkaishi 58:1849–1853

    Article  Google Scholar 

  • Mukai Y, Kobayashki H (1995) Development of free neuromasts with special reference to sensory polarity in larvae of the willow shiner, Gnathopogon elongates caerulescens (Teleostei, Cyprinidae). Zool Sci 12:125–131

    Article  CAS  PubMed  Google Scholar 

  • Mukai Y, Yoshikawa H, Kobayashi H (1994) The relationship between the length of the cupulae of free neuromasts and feeding ability in larvae of the willow shiner Gnathopogon elongates caerulescens (Teleostei, Cyprinidae). J Exp Biol 197:399–403

    PubMed  Google Scholar 

  • Münz H (1979) Morphology and innervation of the lateral line system in Sarotherodon niloticus (L.) (Cichlidae, Teleostei). Zoomorph 93:73–86

    Article  Google Scholar 

  • Münz H (1989) Functional organization of the lateral line periphery. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 285–297

    Chapter  Google Scholar 

  • Nakae M, Sasaki K (2010) Lateral line system and its innervation in Tetraodontiformes with outgroup comparisons: descriptions and phylogenetic implications. J Morphol 271:559–579

    PubMed  Google Scholar 

  • Nakae M, Asai S, Sasaki K (2006) The lateral line system and its innervation in Champsodon snyderi (Champsodontidae): distribution of approximately 1000 neuromasts. Ichthyol Res 53:209–215

    Article  Google Scholar 

  • Nakae M, Asaoka R, Wada H, Sasaki K (2012) Fluorescent dye staining of neuromasts in live fishes: An aid to systematic studies. Ichthyol Res, 59:286–290

    Google Scholar 

  • Northcutt RG (2003) Development of the lateral line system in the channel catfish. In: Browman HI, Skiftesvik AB (eds) The fish big bang, 26th annual larval fish conference. Institute of Marine Research, Bergen, Norway, pp 137–159

    Google Scholar 

  • Nuñez VA, Sarrazin AF, Cubedo N, Allende ML, Dambly-Chaudière C, Ghysen A (2009) Postembryonic development of the posterior lateral line in the zebrafish. Evol Devel 11:391–404

    Article  Google Scholar 

  • Okamura A, Oka HP, Yamada Y, Utoh T, Mikawa N, Horie N, Tanaka S (2002) Development of lateral line organs in leptocephali of the freshwater eel Anguilla japonica (Teleostei, Anguilliformes). J Morphol 254:81–91

    Article  PubMed  Google Scholar 

  • Otsuka M, Nagai S (1997) Neuromast formation in the prehatching embryos of the cod-fish, Gadus macrocephalus Tilesius. Zool Sci 14:475–481

    Article  Google Scholar 

  • Pankhurst PM (2008) Mechanoreception. In: Finn RN, Kapoor BG (eds) Fish larval physiology. Science Publishers, Enfield, pp 305–329

    Google Scholar 

  • Peters HM (1973) Anatomie und Entwicklungsgeschichte des Laterallissystems von Tilapia (Pisces, Cichlidae). Zeitschrift fur Morphologie der Tiere 74:89–161

    Article  Google Scholar 

  • Pietsch TW (2009) Oceanic anglerfishes—extraordinary diversity in the deep sea. University of California Press, Berkeley

    Google Scholar 

  • Poling KR, Fuiman LA (1997) Sensory development and concurrent behavioural changes in Atlantic croaker larvae. J Fish Biol 51:402–421

    Article  Google Scholar 

  • Raible DW, Kruse GJ (2000) Organization of the lateral line system in embryonic zebrafish. J Comp Neurol 421:189–198

    Article  CAS  PubMed  Google Scholar 

  • Rouse GW, Pickles JO (1991) Ultrastructure of free neuromasts of Bathygobius fuscus (Gobiidae) and canal neuromasts of Apogon cyanosoma (Apogonidae). J Morphol 209:111–120

    Google Scholar 

  • Schlosser G (2010) Making senses: development of vertebrate cranial placodes. Int Rev Cell Mol Biol 283:129–234

    Article  CAS  PubMed  Google Scholar 

  • Schmitz A, Bleckmann H, Mogdans J (2008) Organization of the superficial neuromast system in goldfish, Carrasius auratus. J Morphol 269:751–761

    Article  PubMed  Google Scholar 

  • Schwartz JS, Reichenbach T, Hudspeth AJ (2011) A hydrodynamic sensory antenna used by killifish for nocturnal hunting. J Exp Biol 214:1857–1866

    Article  Google Scholar 

  • Shardo JD (1996) Radial polarity of the first neuromast in embryonic American shad, Alosa sapidissima (Teleostei: Clupeomorpha). Copeia 1996:226–228

    Article  Google Scholar 

  • Sire JY, Akimenko MA (2004) Scale development in fish: a review, with description of sonic hedgehog (shh) expression in the zebrafish (Danio rerio). Int J Devel Biol 48:233–247

    Article  CAS  Google Scholar 

  • Song J, Northcutt RG (1991) Morphology, distribution and innervation of the lateral-line receptors of the Florida gar, Lepisosteus platyrhincus. Brain Behav Evol 37:10–37

    Article  CAS  PubMed  Google Scholar 

  • Song J, Yan HY, Popper AN (1995) Damage and recovery of hair cells in fish canal (but not superficial) neuromasts after gentamicin exposure. Hear Res 91:63–71

    Article  CAS  PubMed  Google Scholar 

  • Suli A, Watson GM, Rubel EW, Raible DW (2012) Rheotaxis in larval zebrafish is mediated by lateral line mechanosensory hair cells. PLoS ONE 7:1–6

    Article  Google Scholar 

  • Tarby ML, Webb JF (2003) Development of the supraorbital and mandibular lateral line canals in the cichlid, Archocentrus nigrofasciatus. J Morphol 254:44–57

    Article  Google Scholar 

  • Tekye T (1990) Morphological differences in neuromasts of the blind cave fish Astyanax hubbsi and the sighted river fish Astyanax mexicanus. Brain Behav Evol 35:23–30

    Article  Google Scholar 

  • Van Netten SM (2006) Hydrodynamic detection by cupulae in a lateral line canal: functional relations between physics an physiology. Biol Cybern 94:67–85

    Google Scholar 

  • Van Netten SM, McHenry MJ (2014) The biophysics of the fish lateral line. In: Coombs S, Bleckmann H (eds) The lateral line system. Springer, New York, pp. 99–120

    Google Scholar 

  • Van Trump WJ, McHenry MJ (2008) The morphology and mechanical sensitivity of lateral line receptors in zebrafish larvae (Danio rerio). J Exp Biol 211:2105–2115

    Article  PubMed  Google Scholar 

  • Van Trump WJ, Coombs S, Duncan K, McHenry MJ (2010) Gentamicin is ototoxic to all hair cells in the fish lateral line system. Hear Res 261:42–50

    Article  PubMed  Google Scholar 

  • Vischer HA (1989) The development of lateral-line receptors in Eigenmannia (Teleostei, Gymnotiformes). I. The mechanoreceptive lateral-line system. Brain Behav Evol 33:205–222

    Article  CAS  PubMed  Google Scholar 

  • Wada H, Hamaguchi S, Sakaizumi M (2008) Development of diverse lateral line patterns on the teleost caudal fin. Devel Dyn 237:2889–2902

    Article  CAS  Google Scholar 

  • Webb JF (1989a) Developmental constraints and evolution of the lateral line system in teleost fishes. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, pp 79–97

    Chapter  Google Scholar 

  • Webb JF (1989b) Gross morphology and evolution of the mechanosensory lateral line system in teleost fishes. Brain Behav Evol 33:34–53

    Article  CAS  PubMed  Google Scholar 

  • Webb JF (1989c) Neuromast morphology and lateral line trunk ontogeny in two species of cichlids: an SEM study. J Morphol 202:53–68

    Article  CAS  PubMed  Google Scholar 

  • Webb JF (1990) Ontogeny and phylogeny of the trunk lateral line system in cichlid fishes. J Zool Lond 221:405–418

    Article  Google Scholar 

  • Webb JF (1999) Diversity of fish larvae in development and evolution. In: Hall BK, Wake MH (eds) Origin and evolution of larval forms. Academic Press, San Diego, pp 109–158

    Chapter  Google Scholar 

  • Webb JF (2000) Mechanosensory lateral line: Functional morphology and neuroanatomy. In Ostrander G (ed) Handbook of experimental animals-The laboratory fish London: Academic Press, pp 236–244

    Google Scholar 

  • Webb JF (2011) Lateral line structure. In Farrell AP (ed) Encyclopedia of fish physiology: From genome to environment, Vol 1. Academic Press, San Diego, pp 336–346

    Google Scholar 

  • Webb JF (2014) Morphological diversity, development, and evolution of the mechanosensory lateral line system. In: Coombs S, Bleckmann H (eds) The lateral line system. Springer, New York, pp 17–72

    Google Scholar 

  • Webb JF, Northcutt RG (1997) Morphology and distribution of pit organs and canal neuromasts in non-teleost bony fishes. Brain Behav Evol 50:139–151

    Article  CAS  PubMed  Google Scholar 

  • Webb JF, Shirey JE (2003) Post-embryonic development of the lateral line canals and neuromasts in the zebrafish. Dev Dyn 228:370–385

    Article  PubMed  Google Scholar 

  • Webb JF, Walsh RM, Casper B, Mann DA, Kelly N, Cicchino N (2012) Ontogeny of the ear, hearing capabilities, and laterophysic connection in the spotfin butterflyfish (Chaetodon ocellatus). Env Biol Fishes 95:275–290

    Article  Google Scholar 

  • Windsor SP, McHenry MJ (2009) The influence of viscous hydrodynamics on the fish lateral-line system. Integr Comp Biol 49:691–701

    Article  PubMed  Google Scholar 

  • Wonsettler AL, Webb JF (1997) Morphology and development of the multiple lateral line canals on the trunk in two species of Hexagrammos (Scorpaeniformes: Hexagrammidae). J Morphol 233:195–214

    Article  Google Scholar 

  • Zimmer RK, Derby CD (2011) Neuroecology and the need for a broader synthesis. Integr Comp Biol 51:751–755

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

I thank Dr. Matthew J. McHenry for his insights on the functional implications of ontogenetic changes in neuromast morphology derived from his modeling studies. Members of the Webb lab contributed to figures and provided helpful comments on an earlier version of the manuscript. The writing of this chapter was partially carried out while the author was a Whitman Summer Investigator at the MBL (Woods Hole) and was supported by funds from the College of the Environment and Life Sciences, University of Rhode Island and NSF grant # IOS-0843307.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jacqueline F. Webb .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Webb, J.F. (2014). Lateral Line Morphology and Development and Implications for the Ontogeny of Flow Sensing in Fishes. In: Bleckmann, H., Mogdans, J., Coombs, S. (eds) Flow Sensing in Air and Water. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41446-6_10

Download citation

Publish with us

Policies and ethics