Skip to main content

Natural Hydrodynamic Stimuli

  • Chapter
  • First Online:
Flow Sensing in Air and Water

Abstract

Aquatic animals of all major phyla have developed sensory systems to perceive water movements, so-called hydrodynamic sensory systems. These water movements, or hydrodynamic stimuli, arise from a variety of sources. Some sources of hydrodynamic stimuli are biotic, such as predators, prey, and conspecifics, some are abiotic, such as wind, gravity that induces currents, and others. We have only relatively recently begun to take a closer look at these hydrodynamic stimuli with regard to the question how they may have formed the hydrodynamic sensory systems of aquatic animals during evolution. Hydrodynamic stimuli are measured with several different techniques, some of which are invasive, meaning that a sensor is inserted into the flow, some are noninvasive, such as optical and acoustical techniques. The laser-based technique of particle image velocimetry (PIV) has proven especially helpful. It is an optical technique that measures flow velocities not only in a single point, but simultaneously in hundreds or thousands of points in a selected layer of the fluid, and with more advanced modifications of the technique, even in a limited volume. Furthermore, the laser-based technique of laser Doppler velocimetry has contributed much to our understanding. In this chapter, naturally occurring hydrodynamic stimuli measured with these and other techniques are discussed, along with the advantages and shortcomings of the different experimental approaches.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdel-Latif H, Hassan ES, von Campenhausen C (1990) Sensory performance of blind Mexican cave fish after destruction of the canal lateral neuromasts. Naturwissenschaften 77:237–239. doi:10.1007/bf01138492

    CAS  PubMed  Google Scholar 

  • Adrian RJ (1991) Particle imaging techniques for experimental fluid mechanics. Annu Rev Fluid Mech 23:261–304

    Google Scholar 

  • Arroyo MP, Hinsch KD (2008) Recent developments of PIV towards 3D measurements. In: Schroeder A, Willert CE (eds) Particle image velocimetry: new developments and recent applications, vol 112. Topics in Applied Physics, pp 127–154

    Google Scholar 

  • Barth FG (2000) How to catch the wind: spider hairs specialized for sensing the movement of air. Naturwissenschaften 87:51–58. doi:10.1007/s001140050010

    CAS  PubMed  Google Scholar 

  • Bleckmann H (1980) Reaction-time and stimulus frequency in prey localization in the surface-feeding fish Aplocheilus lineatus. J Comp Physiol A 140:163–172

    Google Scholar 

  • Bleckmann H (1994) Reception of hydrodynamic stimuli in aquatic and semiaquatic animals. Progress in Zoology 41. Gustav Fischer, Stuttgart, Jena, New York

    Google Scholar 

  • Bleckmann H (2008) Peripheral and central processing of lateral line information. J Comp Physiol A 194:145–158

    CAS  Google Scholar 

  • Bleckmann H, Bender M (1987) Water surface waves generated by the male pisaurid Dolomedes triton (Walckenaer) during courtship behavior. J Arachnol 15:363–369

    Google Scholar 

  • Bleckmann H, Zelick R (2009) Lateral line system of fish. Integr Zool 4(1):13–25. doi:10.1111/j.1749-4877.2008.00131.x

    PubMed  Google Scholar 

  • Bleckmann H, Breithaupt T, Blickhan R, Tautz J (1991) The time course and frequency content of hydrodynamic events caused by moving fish, frogs, and crustaceans. J Comp Physiol A 168:749–757

    CAS  PubMed  Google Scholar 

  • Bleckmann H, Borchardt M, Horn P, Görner P (1994) Stimulus discrimination and wave source localization in fishing spiders (Dolomedes triton and D. okefinokensis). J Comp Physiol A 174:305–316

    Google Scholar 

  • Bleckmann H, Mogdans J, Engelmann J, Kröther S, Hanke W (2004) Das Seitenliniensystem: Wie Fische das Wasser fühlen. Biol unserer Zeit 34:2–9

    Google Scholar 

  • Brücker C (1995) Digital-Particle-Image-Velocimetry (DPIV) in a scanning light-sheet: 3D starting flow around a short cylinder. Exp Fluids 19:255–263

    Google Scholar 

  • Brücker C (1996) 3-D PIV via spatial correlation in a color-coded light-sheet. Exp Fluids 21:312–314

    Google Scholar 

  • Brücker C (1997) Study of the three-dimensional flow in a T-junction using a dual-scanning method for three-dimensional particle-image velocimetry (3D-SPIV). Exp Therm Fluid Sci 14:35–44

    Google Scholar 

  • Chagnaud BP, Bleckmann H, Engelmann J (2006) Neural responses of goldfish lateral line afferents to vortex motions. J Exp Biol 209(2):327–342

    PubMed  Google Scholar 

  • Codling EA, Pitchford JW, Simpson SD (2007) Group navigation and the “many-wrongs principle” in models of animal movement. Ecology 88:1864–1870. doi:10.1890/06-0854.1

    CAS  PubMed  Google Scholar 

  • Colin SP, Costello JH, Hansson LJ, Titelman J, Dabiri JO (2010) Stealth predation and the predatory success of the invasive ctenophore Mnemiopsis leidyi. Proc Natl Acad Sci USA 107:17223–17227. doi:10.1073/pnas.1003170107

    CAS  PubMed  Google Scholar 

  • Coombs S, Janssen J, Webb JF (1988) Diversity of lateral line systems: evolutionary and functional considerations. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, Berlin, London, pp 553–593

    Google Scholar 

  • Day SW, Higham TE, Cheer AY, Wainwright PC (2005) Spatial and temporal patterns of water flow generated by suction-feeding bluegill sunfish Lepomis macrochirus resolved by particle image velocimetry. J Exp Biol 208:2661–2671. doi:10.1242/jeb.01708

    PubMed  Google Scholar 

  • Dehnhardt G, Kaminski A (1995) Sensitivity of the mystacial vibrissae of harbour seals (Phoca vitulina) for size differences of actively touched objects. J Exp Biol 198:2317–2323

    CAS  PubMed  Google Scholar 

  • Dehnhardt G, Mauck B, Hanke W, Bleckmann H (2001) Hydrodynamic trail following in harbor seals (Phoca vitulina). Science 293:102–104. doi:10.1126/science.1060514

    CAS  PubMed  Google Scholar 

  • Denton EJ, Gray JAB (1988) Mechanical factors in the excitation of the lateral line of fishes. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, Berlin, London, pp 595–617

    Google Scholar 

  • Dijkgraaf S (1963) The functioning and significance of the lateral line organs. Biol Rev 38:51–105

    CAS  PubMed  Google Scholar 

  • Drucker EG, Lauder GV (1999) Locomotor forces on a swimming fish: three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. J Exp Biol 202:2393–2412

    PubMed  Google Scholar 

  • Drucker EG, Lauder GV (2000) A hydrodynamic analysis of fish swimming speed: wake structure and locomotor force in slow and fast labriform swimmers. J Exp Biol 203:2379–2393

    CAS  PubMed  Google Scholar 

  • Drucker EG, Lauder GV (2001) Wake dynamics and fluid forces of turning maneuvers in sunfish. J Exp Biol 204:431–442

    CAS  PubMed  Google Scholar 

  • Durst F (2010) Fluid mechanics: an introduction to the theory of fluid flows. Springer, Berlin

    Google Scholar 

  • Engelmann J, Hanke W, Mogdans J, Bleckmann H (2000) Hydrodynamic stimuli and the fish lateral line. Nature 408:51–52

    CAS  PubMed  Google Scholar 

  • Engelmann J, Hanke W, Bleckmann H (2001) Rheotaxis of still-water fish and running-water fish and the responses of primary lateral line afferents to DC water flow. In: Proceedings of the 28th Göttingen neurobiology conference

    Google Scholar 

  • Engelmann J, Hanke W, Bleckmann H (2002) Lateral line reception in still- and running water. J Comp Physiol A 188:513–526

    CAS  Google Scholar 

  • Enger PS, Kalmijn AJ, Sand O (1989) Behavioral investigations on the functions of the lateral line and inner ear in predation. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, Berlin, London, Paris, Tokyo, pp 575–587

    Google Scholar 

  • Fay RR (1984) The goldfish ear codes the axis of acoustic particle motion in three dimensions. Science 225:951–954. doi:10.1126/science.6474161

    CAS  PubMed  Google Scholar 

  • Fields DM, Shaeffer DS, Weissburg MJ (2002) Mechanical and neural responses from the mechanosensory hairs on the antennule of Gaussia princeps. Mar Ecol Prog Ser 227:173–186. doi:10.3354/meps227173

    Google Scholar 

  • Flammang BE, Lauder GV, Troolin DR, Strand T (2011) Volumetric imaging of shark tail hydrodynamics reveals a three-dimensional dual-ring vortex wake structure. Proc R Soc B 278:3670–3678. doi:10.1098/rspb.2011.0489

    PubMed  Google Scholar 

  • Fulford JM (2001) Accuracy and consistency of water-current meters. J Am Water Res Ass 37:1215–1224. doi:10.1111/j.1752-1688.2001.tb03633.x

    Google Scholar 

  • Gardiner JM, Atema J (2007) Sharks need the lateral line to locate odor sources: rheotaxis and eddy chemotaxis. J Exp Biol 210:1925–1934. doi:10.1242/jeb.000075

    PubMed  Google Scholar 

  • Hanke W (2001) Hydrodynamische Spuren schwimmender Fische und ihre mögliche Bedeutung für das Jagdverhalten fischfressender Tiere. PhD thesis, Rheinische Friedrich-Wilhelms-Universität, Bonn

    Google Scholar 

  • Hanke W (2009) Predation strategy in European pike-perch Stizostedion lucioperca: the role of hydrodynamic trail following. Integr Comp Biol 49:E71

    Google Scholar 

  • Hanke W, Bleckmann H (2004) The hydrodynamic trails of Lepomis gibbosus (Centrarchidae), Colomesus psittacus (Tetraodontidae) and Thysochromis ansorgii (Cichlidae) measured with scanning particle image velocimetry. J Exp Biol 207:1585–1596. doi:10.1242/jeb.00922

    PubMed  Google Scholar 

  • Hanke W, Lauder GV (2009) Fish schooling: measurements of flow, school structure, and tail beat frequency. Integr Comp Biol 49:E239

    Google Scholar 

  • Hanke W, Brücker C, Bleckmann H (2000a) The ageing of the low-frequency water disturbances caused by swimming goldfish and its possible relevance to prey detection. J Exp Biol 203:1193–1200

    CAS  PubMed  Google Scholar 

  • Hanke W, Meyer E, Bleckmann H (2000b) Behavioural investigations on lateral line function in prey capture in pike-perch (Stizostedion lucioperca). Zoology Suppl II I:109

    Google Scholar 

  • Hanke W, Boyle KS, Tricas TC (2008) Flow measurements during the multimodal communication in Hawaiian butterfly fish. Paper presented at the 16th annual conference of the German Association for Laser Anemometry, Karlsruhe. ISBN: 978-3-9805613-4-1

    Google Scholar 

  • Hanke W, Wieskotten S, Niesterok B, Miersch L, Witte M, Brede M, Leder A, Dehnhardt G (2012) Hydrodynamic perception in pinnipeds. In: Tropea C, Bleckmann H (eds) Nature-inspired fluid mechanics. Springer, Berlin, pp 225–240

    Google Scholar 

  • Hanke W, Wieskotten S, Marshall CD, Dehnhardt G (2013) Hydrodynamic perception in true seals (Phocidae) and eared seals (Otariidae). J Comp Physiol A 199:421–440. doi:10.1007/s00359-012-0778-2

    Google Scholar 

  • Harris GG, van Bergeijk W (1962) Evidence that the lateral-line organ responds to near-field displacements of sound sources in water. J Acoust Soc Am 34:1831–1841

    Google Scholar 

  • Hassan E-S (1985) Mathematical analysis of the stimulus for the lateral line organ. Biol Cybern 52:23–36

    CAS  PubMed  Google Scholar 

  • Hassan ES (1992a) Mathematical description of the stimuli to the lateral line system of fish derived from a 3-dimensional flow field analysis. 1. The cases of moving in open water and of gliding towards a plane surface. Biol Cybern 66:443–452. doi:10.1007/bf00197725

    Google Scholar 

  • Hassan ES (1992b) Mathematical description of the stimuli to the lateral line system of fish derived from a 3-dimensional flow field analysis. 2. The case of gliding alongside or above a plane surface. Biol Cybern 66:453–461. doi:10.1007/bf00197726

    Google Scholar 

  • Higham TE, Day SW, Wainwright PC (2005) Sucking while swimming: evaluating the effects of ram speed on suction generation in bluegill sunfish Lepomis macrochirus using digital particle image velocimetry. J Exp Biol 208:2653–2660. doi:10.1242/jeb.01682

    PubMed  Google Scholar 

  • Hinsch KD (2002) Holographic particle image velocimetry. Meas Sci Technol 13:R61–R72. doi:10.1088/0957-0233/13/7/201

    CAS  Google Scholar 

  • Holzman R, Wainwright PC (2009) How to surprise a copepod: strike kinematics reduce hydrodynamic disturbance and increase stealth of suction-feeding fish. Limnol Oceanogr 54:2201–2212. doi:10.4319/lo.2009.54.6.2201

    Google Scholar 

  • Humphrey JAC, Barth FG (2007) Medium flow-sensing hairs: biomechanics and models. In: Casas J, Simpson SJ (eds) Advances in insect physiology. Insect mechanics and control, vol 34. Elsevier, Amsterdam, pp 1–80. doi:10.1016/s0065-2806(07)34001-0

  • Janssen J (1997) Comparison of response distance to prey via the lateral line in the ruffe and yellow perch. J Fish Biol 51:921–930

    Google Scholar 

  • Kalmijn AJ (1988) Hydrodynamic and acoustic field detection. In: Atema J, Fay RR, Popper AN, Tavolga WN (eds) Sensory biology of aquatic animals. Springer, New York, Berlin, pp 83–130

    Google Scholar 

  • Kalmijn AJ (1989) Functional evolution of lateral line and inner ear sensory systems. In: Coombs S, Görner P, Münz H (eds) The mechanosensory lateral line: neurobiology and evolution. Springer, New York, Berlin, Heidelberg, pp 187–215

    Google Scholar 

  • Kane EA, Higham TE (2011) The integration of locomotion and prey capture in divergent cottid fishes: functional disparity despite morphological similarity. J Exp Biol 214:1092–1099. doi:10.1242/jeb.052068

    PubMed  Google Scholar 

  • Karlsen HE (1992a) Infrasound sensitivity in the plaice (Pleuronectes platessa). J Exp Biol 171:173–187

    Google Scholar 

  • Karlsen HE (1992b) The inner ear is responsible for detection of infrasound in the perch (Perca fluviatilis). J Exp Biol 171:163–172

    Google Scholar 

  • Karlsen HE, Sand O (1987) Selective and reversible blocking of the lateral line in freshwater fish. J Exp Biol 133:249–262

    Google Scholar 

  • Karlsen HE, Piddington RW, Enger PS, Sand A (2004) Infrasound initiates directional fast-start escape responses in juvenile roach Rutilus rutilus. J Exp Biol 207:4185–4193

    PubMed  Google Scholar 

  • Kitzhofer J, Nonn T, Brücker C (2011) Generation and visualization of volumetric PIV data fields. Exp Fluids 51:1471–1492. doi:10.1007/s00348-011-1176-1

    Google Scholar 

  • Krause J, Ruxton GD (2002) Living in groups. Oxford University Press, Oxford

    Google Scholar 

  • Krause J, Ruxton GD, Krause S (2010) Swarm intelligence in animals and humans. Trends Ecol Evol 25:28–34. doi:10.1016/j.tree.2009.06.016

    PubMed  Google Scholar 

  • Krüger Y (2011) Perception of hydrodynamic stimuli in stationary harbour seals (Phoca vitulina). Rostock University, Rostock Diploma thesis

    Google Scholar 

  • Lauder GV (1980a) Evolution of the feeding mechanism in primitive actinopterygian fishes: a functional anatomical analysis of Polypterus, Lepisosteus, and Amia. J Morphol 163:283–317. doi:10.1002/jmor.1051630305

    Google Scholar 

  • Lauder GV (1980b) The suction feeding mechanism in sunfishes (Lepomis): an experimental analysis. J Exp Biol 88:49–72

    Google Scholar 

  • Lauder GV (2011) Swimming hydrodynamics: ten questions and the technical approaches needed to resolve them. Exp Fluids 51:23–35. doi:10.1007/s00348-009-0765-8

    Google Scholar 

  • Lauder GV, Madden PGA (2008) Advances in comparative physiology from high-speed imaging of animal and fluid motion. Annu Rev Physiol 70:143–163. doi:10.1146/annurev.physiol.70.113006.100438

    CAS  PubMed  Google Scholar 

  • Liao JC (2007) A review of fish swimming mechanics and behaviour in altered flows. Phil Trans R Soc B 362:1973–1993

    PubMed  Google Scholar 

  • Liao J, Beal DN, Lauder GV, Triantafyllou M (2001) Novel body kinematics of trout swimming in a von Kármán trail; can fish tune to vortices? Am Zool 41:1505–1506

    Google Scholar 

  • Liao JC, Beal DN, Lauder GV, Triantafyllou MS (2003) The Kármán gait: novel body kinematics of rainbow trout swimming in a vortex street. J Exp Biol 206:1059–1073

    PubMed  Google Scholar 

  • Magurran AE, Oulton WJ, Pitcher TJ (1985) Vigilant behavior and shoal size in minnows. Zeitschrift für Tierpsychologie—J Comp Ethol 67:167–178

    Google Scholar 

  • McHenry MJ, Feitl KE, Strother JA, Van Trump WJ (2009) Larval zebrafish rapidly sense the water flow of a predator’s strike. Biol Lett 5:477–479. doi:10.1098/rsbl.2009.0048

    CAS  PubMed Central  PubMed  Google Scholar 

  • Meuthen D, Rick IP, Thuenken T, Baldauf SA (2012) Visual prey detection by near-infrared cues in a fish. Naturwissenschaften 99:1063–1066. doi:10.1007/s00114-012-0980-7

    CAS  PubMed  Google Scholar 

  • Milne-Thomson (1968) Theoretical hydrodynamics, 5th edn. Macmillan, London

    Google Scholar 

  • Mogdans J, Bleckmann H (1998) Responses of the goldfish trunk lateral line to moving objects. J Comp Physiol A 182:659–676

    Google Scholar 

  • Montgomery JC, Coombs S, Baker CF (2001) The mechanosensory lateral line system of the hypogean form of Astyanax fasciatus. Environ Biol Fishes 62:87–96. doi:10.1023/a:1011873111454

    Google Scholar 

  • Montgomery JC, Macdonald F, Baker CF, Carton AG (2002) Hydrodynamic contributions to multimodal guidance of prey capture behavior in fish. Brain Behav Evol 59:190–198

    PubMed  Google Scholar 

  • Mooney TA, Hanlon RT, Christensen-Dalsgaard J, Madsen PT, Ketten DR, Nachtigall PE (2010) Sound detection by the longfin squid (Loligo pealeii) studied with auditory evoked potentials: sensitivity to low-frequency particle motion and not pressure. J Exp Biol 213:3748–3759. doi:10.1242/jeb.048348

    PubMed  Google Scholar 

  • Muller M, Osse JWM, Verhagen JHG (1982) A quantitative hydrodynamical model of suction feeding in fish. J Theor Biol 95:49–79. doi:10.1016/0022-5193(82)90287-9

    Google Scholar 

  • Müller UK, van den Heuvel BLE, Stamhuis EJ, Videler JJ (1997) Fish foot prints: morphology and energetics of the wake of a continuously swimming mullet. J Exp Biol 200:2893–2906

    Google Scholar 

  • Müller UK, Smit J, Stamhuis EJ, Videler JJ (2001) How the body contributes to the wake in undulatory fish swimming: flow fields of a swimming eel. J Exp Biol 204:2751–2762

    PubMed  Google Scholar 

  • Nauen JC, Lauder GV (2002) Hydrodynamics of caudal fin locomotion by chub mackerel, Scomber japonicus (Scombridae). J Exp Biol 205:1709–1724

    PubMed  Google Scholar 

  • Niesterok B, Hanke W (2013) Hydrodynamic patterns from fast-starts in teleost fish and their possible relevance to predator–prey interactions. J Comp Physiol A 199:139–149. doi:10.1007/s00359-012-0775-5

    Google Scholar 

  • Nitsche W, Brunn A (2006) Strömungsmesstechnik. Springer, Berlin, New York. doi:http://dx.doi.org/10.1007/3-540-32487-9

  • Packard A, Karlsen HE, Sand O (1990) Low-frequency hearing in cephalopods. J Comp Physiol A 166:501–505

    Google Scholar 

  • Piddington RW (1972) Auditory discrimination between compressions and rarefactions by goldfish. J Exp Biol 56:403–419

    CAS  PubMed  Google Scholar 

  • Pitcher TJ, Parrish JK (1993) Functions of shoaling behaviour in teleosts. In: Pitcher TJ (ed) Behaviour of teleost fishes. Chapman & Hall, London

    Google Scholar 

  • Pitcher TJ, Partridge BL, Wardle CS (1976) A blind fish can school. Science 194:963–965

    CAS  PubMed  Google Scholar 

  • Pitcher TJ, Magurran AE, Winfield IJ (1982) Fish in larger shoals find food faster. Behav Ecol Sociobiol 10:149–151

    Google Scholar 

  • Pohlmann K, Grasso FW, Breithaupt T (2001) Tracking wakes: the nocturnal predatory strategy of piscivorous catfish. Proc Natl Acad Sci USA 98:7371–7374

    CAS  PubMed  Google Scholar 

  • Pohlmann K, Atema J, Breithaupt T (2004) The importance of the lateral line in nocturnal predation of piscivorous catfish. J Exp Biol 207:2971–2978. doi:10.1242/jeb.01129

    Google Scholar 

  • Prasad AK, Adrian RJ (1993) Stereoscopic particle image velocimetry applied to liquid flows. Exp Fluids 15:49–60

    CAS  Google Scholar 

  • Przybilla A, Kunze S, Rudert A, Bleckmann H, Brücker C (2010) Entraining in trout: a behavioural and hydrodynamic analysis. J Exp Biol 213:2976–2986. doi:10.1242/jeb.041632

    PubMed  Google Scholar 

  • Sand O (1974) Recordings of saccular microphonic potentials in the perch. Comp Biochem Physiol 47:387–390

    CAS  Google Scholar 

  • Sand O, Karlsen HE (1986) Detection of infrasound by the Atlantic cod. J Exp Biol 125:197–204

    CAS  PubMed  Google Scholar 

  • Sand O, Karlsen HE (2000) Detection of infrasound and linear acceleration in fishes. Phil Trans R Soc B 355:1295–1298

    CAS  PubMed  Google Scholar 

  • Schulte-Pelkum N, Wieskotten S, Hanke W, Dehnhardt G, Mauck B (2007) Tracking of biogenic hydrodynamic trails in a harbor seal (Phoca vitulina). J Exp Biol 210:781–787

    CAS  PubMed  Google Scholar 

  • Schwalbe MAB, Bassett DK, Webb JF (2012) Feeding in the dark: lateral-line-mediated prey detection in the peacock cichlid Aulonocara stuartgranti. J Exp Biol 215:2060–2071. doi:10.1242/jeb.065920

    PubMed  Google Scholar 

  • Shih HH (2011) Real-time current and wave measurements in ports and harbors using ADCP. Oceans 2012 MTS/IEEE Conference, Yeosu, Korea, pp 1–8

    Google Scholar 

  • Stamhuis EJ, Videler JJ (1995) Quantitative flow analysis around aquatic animals using laser sheet particle image velocimetry. J Exp Biol 198:283–294

    PubMed  Google Scholar 

  • Stamhuis EJ, Videler JJ (1998) Burrow ventilation in the tube-dwelling shrimp Callianassa subterranea (Decapoda: Thalassinidea). J Exp Biol 201:2159–2170

    CAS  PubMed  Google Scholar 

  • Standen EM, Lauder GV (2007) Hydrodynamic function of dorsal and anal fins in brook trout (Salvelinus fontinalis). J Exp Biol 210:325–339. doi:10.1242/jeb.02661

    CAS  PubMed  Google Scholar 

  • Strecker U, Hausdorf B, Wilkens H (2012) Parallel speciation in Astyanax cave fish (Teleostei) in Northern Mexico. Mol Phylogenet Evol 62:62–70. doi:10.1016/j.ympev.2011.09.005

    PubMed  Google Scholar 

  • Taguchi M, Liao JC (2011) Rainbow trout consume less oxygen in turbulence: the energetics of swimming behaviors at different speeds. J Exp Biol 214:1428–1436. doi:10.1242/jeb.052027

    PubMed  Google Scholar 

  • Urick RJ (1996) Principles of underwater sound. Peninsula Publishing, Los Altos

    Google Scholar 

  • van Duren EA, Stamhuis EJ, Videler JJ (2003) Escape from viscosity: kinematics and hydrodynamics of copepod foraging and escape swimming. J Exp Biol 206:269–279

    PubMed  Google Scholar 

  • von Campenhausen C, Riess I, Weissert R (1981) Detection of stationary objects in the blind cave fish Anoptichthys jordani (Characidae). J Comp Physiol A 143:369–374

    Google Scholar 

  • von Kármán T (1911) Über den Mechanismus des Widerstandes, den ein bewegter Körper in einer Flüssigkeit erfährt. Nachrichten von der Wissenschaftlichen Gesellschaft zu Göttingen, Mathematisch-Physikalische Klasse, pp 509–517

    Google Scholar 

  • Walkowiak W, Münz H (1985) The significance of water surface waves in the communication of fire-bellied toads. Naturwissenschaften 72:49–51. doi:10.1007/bf00405335

    Google Scholar 

  • Weihs D (1973) Hydrodynamics of fish schooling. Nature 241:290–291

    Google Scholar 

  • Westerweel J (1997) Fundamentals of digital particle image velocimetry. Meas Sci Technol 8:1379–1392. doi:10.1088/0957-0233/8/12/002

    CAS  Google Scholar 

  • White JW, Warner RR (2007) Safety in numbers and the spatial scaling of density-dependent mortality in a coral reef fish. Ecology 88(12):3044–3054. doi:10.1890/06-1949.1

    PubMed  Google Scholar 

  • Wiese K (1976) Mechanoreceptors for near-field water displacements in crayfish. J Neurophysiol 39:816–833

    CAS  PubMed  Google Scholar 

  • Wieskotten S, Dehnhardt G, Mauck B, Miersch L, Hanke W (2010) Hydrodynamic determination of the moving direction of an artificial fin by a harbour seal (Phoca vitulina). J Exp Biol 213:2194–2200. doi:10.1242/jeb.041699

    CAS  PubMed  Google Scholar 

  • Wieskotten S, Mauck B, Miersch L, Dehnhardt G, Hanke W (2011) Hydrodynamic discrimination of wakes caused by objects of different size or shape in a harbour seal (Phoca vitulina). J Exp Biol 214:1922–1930. doi:10.1242/jeb.053926

    PubMed  Google Scholar 

  • Wilga CD, Lauder GV (2000) Three-dimensional kinematics and wake structure of the pectoral fins during locomotion in leopard sharks Triakis semifasciata. J Exp Biol 203:2261–2278

    CAS  PubMed  Google Scholar 

  • Willert CE, Gharib M (1991) Digital particle image velocimetry. Exp Fluids 10:181–193

    Google Scholar 

  • Windsor SP, Norris SE, Cameron SM, Mallinson GD, Montgomery JC (2010a) The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part I: open water and heading towards a wall. J Exp Biol 213:3819–3831. doi:10.1242/jeb.040741

    PubMed  Google Scholar 

  • Windsor SP, Norris SE, Cameron SM, Mallinson GD, Montgomery JC (2010b) The flow fields involved in hydrodynamic imaging by blind Mexican cave fish (Astyanax fasciatus). Part II: gliding parallel to a wall. J Exp Biol 213:3832–3842. doi:10.1242/jeb.040790

    PubMed  Google Scholar 

  • Yanase K, Herbert NA, Montgomery JC (2012) Disrupted flow sensing impairs hydrodynamic performance and increases the metabolic cost of swimming in the yellowtail kingfish, Seriola lalandi. J Exp Biol 215:3944–3954. doi:10.1242/jeb.073437

    PubMed  Google Scholar 

  • Yen J, Lenz PH, Gassie DV, Hartline DK (1992) Mechanoreception in marine copepods—ecophysiological studies on the 1st antennae. J Plankton Res 14(4):495–512. doi:10.1093/plankt/14.4.495

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wolf Hanke .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hanke, W. (2014). Natural Hydrodynamic Stimuli. In: Bleckmann, H., Mogdans, J., Coombs, S. (eds) Flow Sensing in Air and Water. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41446-6_1

Download citation

Publish with us

Policies and ethics