Skip to main content

Spherical Mirror Estimation Using Phase Retrieval Wavefront Sensor Technology

  • Conference paper
  • First Online:
Proceedings of the 3rd International Conference on Multimedia Technology (ICMT 2013)

Part of the book series: Lecture Notes in Electrical Engineering ((LNEE,volume 278))

  • 1649 Accesses

Abstract

In order to verify the estimated wavefront ability of the phase retrieval wavefront sensor (PRWS), a measured spherical mirror of experiment platform was set up with the method of PRWS. PRWS technology is based on the focal plane image information wavefront solver in the focal plane wavefront measured technology, whose principle is sampling a number of the given defocus images; get the wavefront phase information by solving the optical system wavefront with Fourier optical diffractive theory and mathematics optimization. In order to validate the veracity of PRWS, both the PRWS measurement results and ZYGO interferometer measurement results were compared, experimental results demonstrate that agreement is obtained among the errors distribution, PV value and RMS value of ZYGO interferometer, so PRWS technology can effectively estimate the aberrations of spherical mirror.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Brown B, Aaron M (2001) The politics of nature. In: Smith J (ed) The rise of modern genomics, 3rd edn. Wiley, New York

    Google Scholar 

  2. Brady Gregory R, Fienup JR (2004) Improved optical metrology using phase retrieval. Optical fabrication and testing, vol 10. Rochester, NY, 2004, p 1–3

    Google Scholar 

  3. Yang H, Gong C (2011) Phase retrieval for a kind of wavefront sensor based on pupil phase diversity. Acta Optica Sinica 31(11):1112002

    Article  MathSciNet  Google Scholar 

  4. Osten W (2008) Some answers to new challenges in optical metrology. Proc SPIE 7155: 715503-1–715503-16

    Google Scholar 

  5. Ohara CM, Faust JA, Lowman AE et al (2004) Phase retrieval camera optical testing of the advanced mirror system demonstrator. SPIE 5487:1744–1756

    Google Scholar 

  6. Gerchberg RW, Saxton WO (1972) A practical algorithm for the determination of phase from image and diffraction phase pictures. Optic 35(2):237–246

    Google Scholar 

  7. Fienup JR (1982) Phase retrieval algorithms: a comparison. Appl Opt 21(15):2758–2769

    Article  Google Scholar 

  8. Fienup JR, Marron JC, Schulz TJ et al (1993) Hubble space telescope characterized by using phase-retrieval algorithms. Appl Opt 32(10):1747–1767

    Google Scholar 

  9. Dean Bruce H, Aronstein David L, Smith JS et al (2006) Phase retrieval algorithm for JWST flight and testbed telescope. Proc SPIE 6265:1–17

    Google Scholar 

  10. Fei Li, Changhui Rao (2011) Study on phase diversity wavefront sensor. Acta Optica Sinica 31(8):0804001

    Article  Google Scholar 

  11. Liang S, Yang J, Xue B (2010) A new phase diversity wave-front error sensing method based on genetic algorithm. Acta Optica Sinica 30(4):1015–1019

    Google Scholar 

  12. Jiang P, Ma H, Zou Y et al (2011) Study of aberration correction in light path of adaptive optical system. Acta Optica Sinica 31(12):1214002

    Google Scholar 

  13. Devaney AJ, Childlaw R (1978) On the uniqueness question in the problem of phase retrieval from intensity measurement. JOSA A 68(10):1352–1354

    Google Scholar 

  14. Han B, Xiao W, Pan F et al (2012) Optimization of space sampling distance of phase retrieval algorithm for in-line digital holography. Laser Optoelectron Prog 49:120903

    Google Scholar 

  15. Fu F, Bin Z (2011) Recovery of high frequency phase of laser beam with wavefront distortio. Chin J Lasers 38(4):0402009

    Google Scholar 

  16. Brady Gregory R, Fienup JR (2005) Phase retrieval as an optical metrology tool. In: Optical fabrication and testing. Topical meeting of the optical society of America, SPIE Technical Digest 2005, TD03, pp 139–141

    Google Scholar 

  17. Millerd JE, Wyant JC (2005) Simultaneous phase-shifting fizeau interferometer.US Patent 20050046864

    Google Scholar 

  18. Deck Leslie (1996) Vibration-resistant phase-shifting interferometry. Appl Opt 35(34):6655–6662

    Article  Google Scholar 

  19. Burge JH, Wyant JC (1995) Applications of computer-generated holograms for interferometric measurement of large aspheric optics. Proc SPIE 2576:258–269

    Google Scholar 

  20. Reichelt S, Pruss C, Tiziani HJ (2003) Absolute interferometric test of aspheres by use of twin computer- generated holograms. Appl Opt 42(22):4468–4479

    Article  Google Scholar 

  21. Sommargren GE, Phillion DW, Campbell EW (1999) Sub-nanometer interferometry for aspheric mirror fabrication. In:The 9th international conference on production engineering, Osaka, Japan, 1999

    Google Scholar 

  22. Reichelt S,Tiziani HJ (2003) Twin-CGHs for absolute calibration in wavefront testing interferometry. Opt Commun 220:23–32

    Google Scholar 

  23. Ma X, Wang J, Wang B (2012) Study on phase retrieval algorithm. Laser Infrared 42(2):217–221

    Google Scholar 

  24. Wang JL, Wang ZY, Wang B et al (2011) Image restoration by phase-diversity speckle. Opt Precis Eng 19(5):1165–1170

    Google Scholar 

  25. Wang B, Wang ZY, Wang JL et al (2011) Phase-diverse speckle imaging with two cameras. Opt Precis Eng 19(6):1384–1390

    Google Scholar 

  26. Zhao JY, Chen ZF, Wang B et al (2012) Improvement of phase diversity object function’s parallelity. J Opt Precis Eng 20(2):431–438

    Google Scholar 

  27. Wang B, Ma XX et al (2013) Calibration of no-common path aberration in AO system using multi-channel phase-diversity wave-front sensing. Opt Precis Eng 21(7):1683–1692

    Article  Google Scholar 

  28. Wang ZY, Wang B, Wu YH et al (2012) Calibration of non-common path static aberrations by using phase diversity technology. Acta Optica Sinica 32(7):0701007

    Google Scholar 

  29. Zhao JY, Ma XX et al (2012) Image restoration based on real time wave-front information. Opt Precis Eng 20 (6):1350–1356

    Google Scholar 

  30. Byrd RH, Lu P, Nocedal J (1995) A limited-memory algorithm for bound-constrained optimization. SIAM J Sci Stat Comput 16(5):1190–1208

    Article  MathSciNet  MATH  Google Scholar 

  31. Mahdi H, Stojan R et al (2012) Memory-enhanced noiseless cross-phase modulation. Light Sci Appl 40

    Google Scholar 

  32. Lingling H, Xianzhong C et al (2013) Helicity dependent directional surface plasmon polariton excitation using a metasurface with interfacial phase discontinuity. Light Sci Appl 2:e70

    Google Scholar 

  33. Dai D, Bauters J, Bowers JE (2012) Passive technologies for future large-scale photonic integrated circuits on silicon: polarization handling, light non-reciprocity and loss reduction. Light Sci Appl 1:e1

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bin Wang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Ma, X., Wang, J., Wang, B., Lv, T. (2014). Spherical Mirror Estimation Using Phase Retrieval Wavefront Sensor Technology. In: Farag, A., Yang, J., Jiao, F. (eds) Proceedings of the 3rd International Conference on Multimedia Technology (ICMT 2013). Lecture Notes in Electrical Engineering, vol 278. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41407-7_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41407-7_1

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41406-0

  • Online ISBN: 978-3-642-41407-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics