Skip to main content

Sharp Interpolation Inequalities on the Sphere: New Methods and Consequences

  • Chapter

Abstract

This paper is devoted to various considerations on a family of sharp interpolation inequalities on the sphere, which in dimension greater than 1 interpolate between Poincaré, logarithmic Sobolev and critical Sobolev (Onofri in dimension two) inequalities. The connection between optimal constants and spectral properties of the Laplace-Beltrami operator on the sphere is emphasized. The authors address a series of related observations and give proofs based on symmetrization and the ultraspherical setting.

Project supported by ANR grants CBDif and NoNAP, the ECOS project (No. C11E07), the Chilean research grants Fondecyt (No. 1090103), Fondo Basal CMM-Chile, Project Anillo ACT-125 CAPDE and the National Science Foundation (No. DMS-0901304).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Arnold, A., Bartier, J.P., Dolbeault, J.: Interpolation between logarithmic Sobolev and Poincaré inequalities. Commun. Math. Sci. 5, 971–979 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arnold, A., Dolbeault, J.: Refined convex Sobolev inequalities. J. Funct. Anal. 225, 337–351 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  3. Arnold, A., Markowich, P., Toscani, G., et al.: On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations. Commun. Partial Differ. Equ. 26, 43–100 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  4. Aubin, T.: Problèmes isopérimétriques et espaces de Sobolev. J. Differ. Geom. 11, 573–598 (1976)

    MathSciNet  MATH  Google Scholar 

  5. Baernstein, A., Taylor, B.A.: Spherical rearrangements, subharmonic functions, and ∗-functions in n-space. Duke Math. J. 43, 245–268 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bakry, D.: Une suite d’inégalités remarquables pour les opérateurs ultrasphériques. C. R. Math. Acad. Sci. 318, 161–164 (1994)

    MathSciNet  MATH  Google Scholar 

  7. Bakry, D., Bentaleb, A.: Extension of Bochner-Lichnérowicz formula on spheres. Ann. Fac. Sci. Toulouse 14(6), 161–183 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bakry, D., Émery, M.: Hypercontractivité de semi-groupes de diffusion. C. R. Math. Acad. Sci. 299, 775–778 (1984)

    MATH  Google Scholar 

  9. Bakry, D., Émery, M.: In: Diffusions Hypercontractives, Séminaire de Probabilités, XIX, 1983/1984. Lecture Notes in Math., vol. 1123, pp. 177–206. Springer, Berlin (1985)

    Google Scholar 

  10. Beckner, W.: A generalized Poincaré inequality for Gaussian measures. Proc. Am. Math. Soc. 105, 397–400 (1989)

    MathSciNet  MATH  Google Scholar 

  11. Beckner, W.: Sobolev inequalities, the Poisson semigroup, and analysis on the sphere S n. Proc. Natl. Acad. Sci. USA 89, 4816–4819 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  12. Beckner, W.: Sharp Sobolev inequalities on the sphere and the Moser-Trudinger inequality. Ann. Math. 138(2), 213–242 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  13. Bentaleb, A.: Développement de la moyenne d’une fonction pour la mesure ultrasphérique. C. R. Math. Acad. Sci. 317, 781–784 (1993)

    MathSciNet  MATH  Google Scholar 

  14. Bentaleb, A.: Inégalité de Sobolev pour l’opérateur ultrasphérique. C. R. Math. Acad. Sci. 317, 187–190 (1993)

    MathSciNet  MATH  Google Scholar 

  15. Bentaleb, A.: Sur l’hypercontractivité des Semi-groupes Ultrasphériques, Séminaire de Probabilités, XXXIII. Lecture Notes in Math., vol. 1709, pp. 410–414. Springer, Berlin (1999)

    Google Scholar 

  16. Bentaleb, A.: L’hypercontractivité des semi-groupes de Gegenbauer multidimensionnels—famille d’iné- galités sur le cercle. Int. J. Math. Game Theory Algebr. 12, 259–273 (2002)

    MathSciNet  MATH  Google Scholar 

  17. Bentaleb, A.: In: Sur les Fonctions Extrémales des Inégalités de Sobolev des Opérateurs de Diffusion, Séminaire de Probabilités, XXXVI. Lecture Notes in Math., vol. 1801, pp. 230–250. Springer, Berlin (2003)

    Google Scholar 

  18. Bentaleb, A., Fahlaoui, S.: Integral inequalities related to the Tchebychev semigroup. Semigroup Forum 79, 473–479 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Bentaleb, A., Fahlaoui, S.: A family of integral inequalities on the circle \({\bf S}^{1}\). Proc. Jpn. Acad., Ser. A, Math. Sci. 86, 55–59 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Berger, M., Gauduchon, P., Mazet, E.: Le Spectre d’une Variété Riemannienne. Lecture Notes in Mathematics, vol. 194. Springer, Berlin (1971)

    MATH  Google Scholar 

  21. Bidaut-Véron, M.F., Véron, L.: Nonlinear elliptic equations on compact Riemannian manifolds and asymptotics of Emden equations. Invent. Math. 106, 489–539 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  22. Bolley, F., Gentil, I.: Phi-entropy inequalities and Fokker-Planck equations. In: Progress in Analysis and Its Applications, pp. 463–469. World Scientific, Hackensack (2010)

    Google Scholar 

  23. Bolley, F., Gentil, I.: Phi-entropy inequalities for diffusion semigroups. J. Math. Pures Appl. 93(9), 449–473 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Brock, F.: A general rearrangement inequality à la Hardy-Littlewood. J. Inequal. Appl. 5, 309–320 (2000)

    MathSciNet  MATH  Google Scholar 

  25. Carlen, E., Loss, M.: Computing symmetries, the logarithmic HLS inequality and Onofri’s inequality on S n. Geom. Funct. Anal. 2, 90–104 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  26. Chafaï, D.: Entropies, convexity, and functional inequalities: on Φ-entropies and Φ-Sobolev inequalities. J. Math. Kyoto Univ. 44, 325–363 (2004)

    MathSciNet  Google Scholar 

  27. Funk, P.: Beiträge zur Theorie der Kegelfunktionen. Math. Ann. 77, 136–162 (1915)

    Article  MathSciNet  MATH  Google Scholar 

  28. Gidas, B., Spruck, J.: Global and local behavior of positive solutions of nonlinear elliptic equations. Commun. Pure Appl. Math. 34, 525–598 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  29. Gross, L.: Logarithmic Sobolev inequalities. Am. J. Math. 97, 1061–1083 (1975)

    Article  Google Scholar 

  30. Hebey, E.: Nonlinear analysis on manifolds: Sobolev spaces and inequalities. Courant Lecture Notes in Mathematics, vol. 5. New York University Courant Institute of Mathematical Sciences, New York (1999)

    Google Scholar 

  31. Hecke, E.: Über orthogonal-invariante Integralgleichungen. Math. Ann. 78, 398–404 (1917)

    Article  MathSciNet  MATH  Google Scholar 

  32. Latała, R., Oleszkiewicz, K.: In: Between Sobolev and Poincaré, Geometric Aspects of Functional Analysis. Lecture Notes in Math., vol. 1745, pp. 147–168. Springer, Berlin (2000)

    Google Scholar 

  33. Lieb, E.H.: Sharp constants in the Hardy-Littlewood-Sobolev and related inequalities. Ann. Math. 118(2), 349–374 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  34. Mueller, C.E., Weissler, F.B.: Hypercontractivity for the heat semigroup for ultraspherical polynomials and on the n-sphere. J. Funct. Anal. 48, 252–283 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  35. Rosen, G.: Minimum value for c in the Sobolev inequality ϕ 3∥≤cϕ3. SIAM J. Appl. Math. 21, 30–32 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  36. Talenti, G.: Best constant in Sobolev inequality. Ann. Mat. Pura Appl. 110(4), 353–372 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  37. Weissler, F.B.: Logarithmic Sobolev inequalities and hypercontractive estimates on the circle. J. Funct. Anal. 37, 218–234 (1980)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jean Dolbeault .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Dolbeault, J., Esteban, M.J., Kowalczyk, M., Loss, M. (2014). Sharp Interpolation Inequalities on the Sphere: New Methods and Consequences. In: Ciarlet, P., Li, T., Maday, Y. (eds) Partial Differential Equations: Theory, Control and Approximation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41401-5_9

Download citation

Publish with us

Policies and ethics