Non-Gaussian Test Models for Prediction and State Estimation with Model Errors



Turbulent dynamical systems involve dynamics with both a large dimensional phase space and a large number of positive Lyapunov exponents. Such systems are ubiquitous in applications in contemporary science and engineering where the statistical ensemble prediction and the real time filtering/state estimation are needed despite the underlying complexity of the system. Statistically exactly solvable test models have a crucial role to provide firm mathematical underpinning or new algorithms for vastly more complex scientific phenomena. Here, a class of statistically exactly solvable non-Gaussian test models is introduced, where a generalized Feynman-Kac formulation reduces the exact behavior of conditional statistical moments to the solution to inhomogeneous Fokker-Planck equations modified by linear lower order coupling and source terms. This procedure is applied to a test model with hidden instabilities and is combined with information theory to address two important issues in the contemporary statistical prediction of turbulent dynamical systems: the coarse-grained ensemble prediction in a perfect model and the improving long range forecasting in imperfect models. The models discussed here should be useful for many other applications and algorithms for the real time prediction and the state estimation.


Prediction Model error Information theory Feynman-Kac framework Fokker-Planck Turbulent dynamical systems 

Mathematics Subject Classification

60G25 60H10 60H30 82C31 94A15 


  1. 1.
    Bensoussan, A.: Stochastic Control of Partially Observable Systems. Cambridge University Press, Cambridge (1992) CrossRefzbMATHGoogle Scholar
  2. 2.
    Bourlioux, A., Majda, A.J.: An elementary model for the validation of flamelet approximations in non-premixed turbulent combustion. Combust. Theory Model. 4(2), 189–210 (2000) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Branicki, M., Gershgorin, B., Majda, A.J.: Filtering skill for turbulent signals for a suite of nonlinear and linear Kalman filters. J. Comput. Phys. 231, 1462–1498 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Branicki, M., Majda, A.J.: Fundamental limitations of polynomial chaos for uncertainty quantification in systems with intermittent instabilities. Commun. Math. Sci. 11(1) (2012, in press) Google Scholar
  5. 5.
    Branicki, M., Majda, A.J.: Quantifying uncertainty for predictions with model error in non-Gaussian models with intermittency. Nonlinearity 25, 2543–2578 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Cover, T.A., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-Interscience, Hoboken (2006) Google Scholar
  7. 7.
    Gardiner, C.: Stochastic Methods: A Handbook for the Natural and Social Sciences, 4th edn. Springer Series in Synergetics. Springer, Berlin (2010) Google Scholar
  8. 8.
    Gershgorin, B., Harlim, J., Majda, A.J.: Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation. J. Comput. Phys. 229, 32–57 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Gershgorin, B., Harlim, J., Majda, A.J.: Test models for improving filtering with model errors through stochastic parameter estimation. J. Comput. Phys. 229, 1–31 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Gershgorin, B., Majda, A.J.: A test model for fluctuation-dissipation theorems with time-periodic statistics. Physica D 239, 1741–1757 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Gershgorin, B., Majda, A.J.: Quantifying uncertainty for climate change and long range forecasting scenarios with model errors. Part I: Gaussian models. J. Climate 25, 4523–4548 (2012) CrossRefGoogle Scholar
  12. 12.
    Gershgorin, B., Majda, A.J.: A nonlinear test model for filtering slow-fast systems. Commun. Math. Sci. 6, 611–649 (2008) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Gershgorin, B., Majda, A.J.: Filtering a nonlinear slow-fast system with strong fast forcing. Commun. Math. Sci. 8, 67–92 (2009) MathSciNetCrossRefGoogle Scholar
  14. 14.
    Gershgorin, B., Majda, A.J.: Filtering a statistically exactly solvable test model for turbulent tracers from partial observations. J. Comput. Phys. 230, 1602–1638 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Harlim, J., Majda, A.J.: Filtering turbulent sparsely observed geophysical flows. Mon. Weather Rev. 138(4), 1050–1083 (2010) CrossRefGoogle Scholar
  16. 16.
    Hersh, R.: Random evolutions: a survey of results and problems. Rocky Mt. J. Math. 4(3), 443–477 (1974) MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press, Cambridge (1996) Google Scholar
  18. 18.
    Kleeman, R.: Information theory and dynamical system predictability. Entropy 13, 612–649 (2011) MathSciNetCrossRefGoogle Scholar
  19. 19.
    LeVeque, R.: Numerical Methods for Conservation Laws. ETH Lectures in Mathematics Series. Birkhäuser, Basel (1990) CrossRefzbMATHGoogle Scholar
  20. 20.
    Liptser, R.S., Shiryaev, A.N.: Statistics of Random Process, 2nd edn. Springer, New York (2001) CrossRefGoogle Scholar
  21. 21.
    Majda, A., Kramer, P.: Simplified models for turbulent diffusion: theory, numerical modeling, and physical phenomena. Phys. Rep. 314(4), 237–257 (1999) MathSciNetCrossRefGoogle Scholar
  22. 22.
    Majda, A.J.: Challenges in climate science and contemporary applied mathematics. Commun. Pure Appl. Math. 65(7), 920–948 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  23. 23.
    Majda, A.J., Abramov, R., Gershgorin, B.: High skill in low frequency climate response through fluctuation dissipation theorems despite structural instability. Proc. Natl. Acad. Sci. USA 107(2), 581–586 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Majda, A.J., Abramov, R.V., Grote, M.J.: Information theory and stochastics for multiscale nonlinear systems. CRM Monograph Series, vol. 25. Am. Math. Soc., Providence (2005) zbMATHGoogle Scholar
  25. 25.
    Majda, A.J., Branicki, M.: Lessons in uncertainty quantification for turbulent dynamical systems. Discrete Contin. Dyn. Syst. 32(9), 3133–3231 (2012) MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Majda, A.J., Franzke, C., Crommelin, D.: Normal forms for reduced stochastic climate models. Proc. Natl. Acad. Sci. USA 106(10), 3649–3653 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Majda, A.J., Franzke, C., Fischer, A., Crommelin, D.T.: Distinct metastable atmospheric regimes despite nearly Gaussian statistics: a paradigm model. Proc. Natl. Acad. Sci. USA 103(22), 8309–8314 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Majda, A.J., Gershgorin, B.: Quantifying uncertainty in climage change science through empirical information theory. Proc. Natl. Acad. Sci. USA 107(34), 14958–14963 (2010) MathSciNetCrossRefGoogle Scholar
  29. 29.
    Majda, A.J., Gershgorin, B.: Improving model fidelity and sensitivity for complex systems through empirical information theory. Proc. Natl. Acad. Sci. USA 108(5), 10044–10049 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Majda, A.J., Gershgorin, B.: Link between statistical equilibrium fidelity and forecasting skill for complex systems with model error. Proc. Natl. Acad. Sci. USA 108(31), 12599–12604 (2011) MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Majda, A.J., Kleeman, R., Cai, D.: A mathematical framework for predictability through relative entropy. Methods Appl. Anal. 9(3), 425–444 (2002) MathSciNetzbMATHGoogle Scholar
  32. 32.
    Majda, A.J., Wang, X.: Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows. Cambridge University Press, Cambridge (2006) CrossRefzbMATHGoogle Scholar
  33. 33.
    Majda, A.J., Gershgorin, B.: Elementary models for turbulent diffusion with complex physical features: eddy diffusivity, spectrum, and intermittency. Philos. Trans. R. Soc. (2011, in press) Google Scholar
  34. 34.
    Majda, A.J., Harlim, J.: Filtering Complex Turbulent Systems. Cambridge University Press, Cambridge (2012) CrossRefzbMATHGoogle Scholar
  35. 35.
    Majda, A.J., Harlim, J., Gershgorin, B.: Mathematical strategies for filtering turbulent dynamical systems. Discrete Contin. Dyn. Syst. 27, 441–486 (2010) MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Risken, H.: The Fokker-Planck Equation: Methods of Solutions and Applications, 2nd edn. Series in Synergetics. Springer, Berlin (1989) CrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Department of Mathematics and Center for Atmosphere Ocean Science, Courant Institute of Mathematical SciencesNew York UniversityNew YorkUSA

Personalised recommendations