Skip to main content

Non-Gaussian Test Models for Prediction and State Estimation with Model Errors

  • Chapter
Partial Differential Equations: Theory, Control and Approximation

Abstract

Turbulent dynamical systems involve dynamics with both a large dimensional phase space and a large number of positive Lyapunov exponents. Such systems are ubiquitous in applications in contemporary science and engineering where the statistical ensemble prediction and the real time filtering/state estimation are needed despite the underlying complexity of the system. Statistically exactly solvable test models have a crucial role to provide firm mathematical underpinning or new algorithms for vastly more complex scientific phenomena. Here, a class of statistically exactly solvable non-Gaussian test models is introduced, where a generalized Feynman-Kac formulation reduces the exact behavior of conditional statistical moments to the solution to inhomogeneous Fokker-Planck equations modified by linear lower order coupling and source terms. This procedure is applied to a test model with hidden instabilities and is combined with information theory to address two important issues in the contemporary statistical prediction of turbulent dynamical systems: the coarse-grained ensemble prediction in a perfect model and the improving long range forecasting in imperfect models. The models discussed here should be useful for many other applications and algorithms for the real time prediction and the state estimation.

Project supported by the Office of Naval Research (ONR) Grants (No. ONR DRI N00014-10-1-0554) and the DOD-MURI award “Physics Constrained Stochastic-Statistical Models for Extended Range Environmental Prediction”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bensoussan, A.: Stochastic Control of Partially Observable Systems. Cambridge University Press, Cambridge (1992)

    Book  MATH  Google Scholar 

  2. Bourlioux, A., Majda, A.J.: An elementary model for the validation of flamelet approximations in non-premixed turbulent combustion. Combust. Theory Model. 4(2), 189–210 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  3. Branicki, M., Gershgorin, B., Majda, A.J.: Filtering skill for turbulent signals for a suite of nonlinear and linear Kalman filters. J. Comput. Phys. 231, 1462–1498 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  4. Branicki, M., Majda, A.J.: Fundamental limitations of polynomial chaos for uncertainty quantification in systems with intermittent instabilities. Commun. Math. Sci. 11(1) (2012, in press)

    Google Scholar 

  5. Branicki, M., Majda, A.J.: Quantifying uncertainty for predictions with model error in non-Gaussian models with intermittency. Nonlinearity 25, 2543–2578 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  6. Cover, T.A., Thomas, J.A.: Elements of Information Theory, 2nd edn. Wiley-Interscience, Hoboken (2006)

    Google Scholar 

  7. Gardiner, C.: Stochastic Methods: A Handbook for the Natural and Social Sciences, 4th edn. Springer Series in Synergetics. Springer, Berlin (2010)

    Google Scholar 

  8. Gershgorin, B., Harlim, J., Majda, A.J.: Improving filtering and prediction of spatially extended turbulent systems with model errors through stochastic parameter estimation. J. Comput. Phys. 229, 32–57 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gershgorin, B., Harlim, J., Majda, A.J.: Test models for improving filtering with model errors through stochastic parameter estimation. J. Comput. Phys. 229, 1–31 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gershgorin, B., Majda, A.J.: A test model for fluctuation-dissipation theorems with time-periodic statistics. Physica D 239, 1741–1757 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gershgorin, B., Majda, A.J.: Quantifying uncertainty for climate change and long range forecasting scenarios with model errors. Part I: Gaussian models. J. Climate 25, 4523–4548 (2012)

    Article  Google Scholar 

  12. Gershgorin, B., Majda, A.J.: A nonlinear test model for filtering slow-fast systems. Commun. Math. Sci. 6, 611–649 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gershgorin, B., Majda, A.J.: Filtering a nonlinear slow-fast system with strong fast forcing. Commun. Math. Sci. 8, 67–92 (2009)

    Article  MathSciNet  Google Scholar 

  14. Gershgorin, B., Majda, A.J.: Filtering a statistically exactly solvable test model for turbulent tracers from partial observations. J. Comput. Phys. 230, 1602–1638 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  15. Harlim, J., Majda, A.J.: Filtering turbulent sparsely observed geophysical flows. Mon. Weather Rev. 138(4), 1050–1083 (2010)

    Article  Google Scholar 

  16. Hersh, R.: Random evolutions: a survey of results and problems. Rocky Mt. J. Math. 4(3), 443–477 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  17. Iserles, A.: A First Course in the Numerical Analysis of Differential Equations. Cambridge University Press, Cambridge (1996)

    Google Scholar 

  18. Kleeman, R.: Information theory and dynamical system predictability. Entropy 13, 612–649 (2011)

    Article  MathSciNet  Google Scholar 

  19. LeVeque, R.: Numerical Methods for Conservation Laws. ETH Lectures in Mathematics Series. Birkhäuser, Basel (1990)

    Book  MATH  Google Scholar 

  20. Liptser, R.S., Shiryaev, A.N.: Statistics of Random Process, 2nd edn. Springer, New York (2001)

    Book  Google Scholar 

  21. Majda, A., Kramer, P.: Simplified models for turbulent diffusion: theory, numerical modeling, and physical phenomena. Phys. Rep. 314(4), 237–257 (1999)

    Article  MathSciNet  Google Scholar 

  22. Majda, A.J.: Challenges in climate science and contemporary applied mathematics. Commun. Pure Appl. Math. 65(7), 920–948 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  23. Majda, A.J., Abramov, R., Gershgorin, B.: High skill in low frequency climate response through fluctuation dissipation theorems despite structural instability. Proc. Natl. Acad. Sci. USA 107(2), 581–586 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  24. Majda, A.J., Abramov, R.V., Grote, M.J.: Information theory and stochastics for multiscale nonlinear systems. CRM Monograph Series, vol. 25. Am. Math. Soc., Providence (2005)

    MATH  Google Scholar 

  25. Majda, A.J., Branicki, M.: Lessons in uncertainty quantification for turbulent dynamical systems. Discrete Contin. Dyn. Syst. 32(9), 3133–3231 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Majda, A.J., Franzke, C., Crommelin, D.: Normal forms for reduced stochastic climate models. Proc. Natl. Acad. Sci. USA 106(10), 3649–3653 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  27. Majda, A.J., Franzke, C., Fischer, A., Crommelin, D.T.: Distinct metastable atmospheric regimes despite nearly Gaussian statistics: a paradigm model. Proc. Natl. Acad. Sci. USA 103(22), 8309–8314 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  28. Majda, A.J., Gershgorin, B.: Quantifying uncertainty in climage change science through empirical information theory. Proc. Natl. Acad. Sci. USA 107(34), 14958–14963 (2010)

    Article  MathSciNet  Google Scholar 

  29. Majda, A.J., Gershgorin, B.: Improving model fidelity and sensitivity for complex systems through empirical information theory. Proc. Natl. Acad. Sci. USA 108(5), 10044–10049 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  30. Majda, A.J., Gershgorin, B.: Link between statistical equilibrium fidelity and forecasting skill for complex systems with model error. Proc. Natl. Acad. Sci. USA 108(31), 12599–12604 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  31. Majda, A.J., Kleeman, R., Cai, D.: A mathematical framework for predictability through relative entropy. Methods Appl. Anal. 9(3), 425–444 (2002)

    MathSciNet  MATH  Google Scholar 

  32. Majda, A.J., Wang, X.: Nonlinear Dynamics and Statistical Theories for Basic Geophysical Flows. Cambridge University Press, Cambridge (2006)

    Book  MATH  Google Scholar 

  33. Majda, A.J., Gershgorin, B.: Elementary models for turbulent diffusion with complex physical features: eddy diffusivity, spectrum, and intermittency. Philos. Trans. R. Soc. (2011, in press)

    Google Scholar 

  34. Majda, A.J., Harlim, J.: Filtering Complex Turbulent Systems. Cambridge University Press, Cambridge (2012)

    Book  MATH  Google Scholar 

  35. Majda, A.J., Harlim, J., Gershgorin, B.: Mathematical strategies for filtering turbulent dynamical systems. Discrete Contin. Dyn. Syst. 27, 441–486 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  36. Risken, H.: The Fokker-Planck Equation: Methods of Solutions and Applications, 2nd edn. Series in Synergetics. Springer, Berlin (1989)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michal Branicki .

Editor information

Editors and Affiliations

Appendices

Appendix A: The Numerical Scheme for Solving the CGFPE System (2.10)

Here, we outline the numerical method for solving the CGFPE system in (2.10) in one spatial dimension. This is achieved by combining the third-order backward differentiation formulas [17] with the method of (see [19]) and the second-order, finite-volume representation for (2.10).

Recall that the CGFPE system consists of a hierarchy of inhomogeneous Fokker-Planck equations for the conditional moments \(\mathcal{M}_{N}(\gamma,t)\) with the forcing terms depending linearly on \(\mathcal{M}_{N}(\gamma,t)\) and inhomogeneities depending linearly on \(\mathcal{M}_{N-i}(\gamma,t)\), i>1. Thus, due to the form of (2.10), the linearity of the forcing and inhomogeneities, we outline here the present algorithm applied to the homogeneous Fokker-Planck part of (2.10), written in the conservative form

$$\begin{aligned} \frac{\partial \pi}{\partial t} = -\frac{\partial}{\partial \gamma} \biggl[ \biggl(F-\frac{1}{2}G_\gamma \biggr)\pi- \frac{1}{2} G \pi_\gamma \biggr], \end{aligned}$$
(A.1)

where \(\pi(\gamma,t) = \int p(u,\gamma,t) {\rm d}u\) and \(G(\gamma ,t) = \widetilde{\sigma}^{2}(\gamma,t)\). Given the spatial grid with nodes γ i ,i=1,…,N, the uniform spacing Δγ, and the approximation

$$\begin{aligned} Q_i(t)\equiv\frac{1}{\Delta\gamma}\int _{\gamma_{i-\frac{1}{2}}}^{\gamma_{i+\frac{1}{2}}}\pi(\gamma,t) {\rm d}\gamma, \end{aligned}$$
(A.2)

we discretize (A.1) in space through the second-order finite volume formula as

$$\begin{aligned} \frac{{\rm d}Q_i}{{\rm d}t} &= - \frac{1}{\Delta\gamma} \biggl[ \biggl(F- \frac{1}{2}G_{\gamma} \biggr)_{i+\frac{1}{2}} \biggl( \frac{9}{16}Q_i + \frac{9}{16}Q_{i+1} - \frac{1}{16}Q_{i-1} - \frac{1}{16}Q_{i+2} \biggr) \\ &\quad{}- \biggl(F-\frac{1}{2}G_{\gamma} \biggr)_{i-\frac{1}{2}} \biggl(\frac {9}{16}Q_{i-1} + \frac{9}{16}Q_{i} - \frac{1}{16}Q_{i-2} - \frac {1}{16}Q_{i+1} \biggr) \biggr] \\ &\quad{}+\frac{1}{2}\frac{1}{\Delta\gamma} \biggl[G_{i+\frac{1}{2}} \biggl(- \frac{9}{8}Q_i + \frac{9}{8}Q_{i+1} + \frac{1}{24}Q_{i-1} - \frac {1}{24}Q_{i+2} \biggr) \\ &\quad{}- G_{i-\frac{1}{2}} \biggl(-\frac{9}{8}Q_{i-1} + \frac{9}{8}Q_{i} + \frac{1}{24}Q_{i-2} - \frac{1}{24}Q_{i+1} \biggr) \biggr]. \end{aligned}$$
(A.3)

The above expression is obtained by seeking higher order interpolants for \(Q_{i+\frac{1}{2}}^{n+1}\) in the standard finite-volume formulation

$$\begin{aligned} \frac{{\rm d}Q_i}{{\rm d}t} &= - \frac{1}{\Delta\gamma} \biggl[ \biggl(F- \frac{1}{2}G_{\gamma} \biggr)_{i+\frac{1}{2}} Q^{n+1}_{i+\frac{1}{2}} - \biggl(F-\frac{1}{2}G_{\gamma} \biggr)_{i-\frac{1}{2}} Q^{n+1}_{i-\frac{1}{2}} \biggr] \\ &\quad{}+\frac{1}{2\Delta\gamma}\bigl[G_{i+\frac{1}{2}}Q^{n+1}_{i+\frac{1}{2}} - G_{i-\frac{1}{2}}Q^{n+1}_{i-\frac{1}{2}}\bigr]. \end{aligned}$$
(A.4)

The second order approximations for \(Q_{i+\frac{1}{2}}^{n+1}\) are obtained by determining the coefficients a,b,c,d in the expansion

$$\begin{aligned} \widetilde{Q}_{i+\frac{1}{2}} = a Q_{i}+b Q_{i+1}+c Q_{i-1}+d Q_{i+2}, \end{aligned}$$

such that \(\widetilde{Q}_{i+\frac{1}{2}} - Q_{i+\frac{1}{2}}\) is of order O((Δγ)3).

The time discretization of (A.1) or (2.10) is obtained by using the three-step backward differentiation formula (BDF3) (see [17]), which belongs to the family of linear multistep methods. In particular, (A.1) is discretized in time as follows

$$\begin{aligned} Q^{n+3} - \frac{18}{11}Q^{n+2} + \frac{9}{11}Q^{n+1} - \frac {2}{11}Q^{n} = \frac{6}{11}\Delta t f\bigl(Q^{n+3}\bigr). \end{aligned}$$
(A.5)

The above implicit formulation can be solved explicitly due to the linearity of (A.1), where

$$\begin{aligned} f\bigl(Q^{n+3}\bigr) = \begin{cases} MQ^{n+3} &\text{for solving } \mathcal{M}_0,\\ MQ^{n+3}+f_{Q_3} &\text{for solving } \mathcal{M}_i\ \text{with}\ i>1. \end{cases} \end{aligned}$$

Thus, (A.5) can be rewritten as

$$\begin{aligned} Q^{n+3} = \begin{cases} (I-\frac{6}{11}\Delta t M )^{-1} (\frac{18}{11}Q^{n+2} - \frac{9}{11}Q^{n+1} + \frac{2}{11}Q^{n} ) \quad\mbox{for\ solving }\ \mathcal{M}_0,\\ (I-\frac{6}{11}\Delta t M )^{-1} (\frac{18}{11}Q^{n+2} - \frac{9}{11}Q^{n+1} + \frac{2}{11}Q^{n} + \frac{6}{11}\Delta t f_{Q_3} ) \\ \quad \mbox{for\ solving }\ \mathcal{M}_i\ \text{with}\ i>1. \end{cases} \end{aligned}$$

The (local) accuracy of the temporal discretization is \(\mathcal{O}((\Delta t)^{3})\). Analogous discretization is implemented for solving the inhomogeneous system (2.10).

Appendix B: Expressions for the Initial Densities

Here, we list the formulas used for generating the initial densities \(\widetilde{p}_{i}(u,\gamma)\) introduced in Sect. 5.1. Recall that we chose the initial densities with uncorrelated variables,

$$\widetilde{p}_{i}(\gamma,u) =\widetilde{\pi}_{i}(\gamma) \widetilde{\pi}_{i}(u), $$

where the marginal densities \(\widetilde{\pi}_{i}(\gamma)\) and \(\widetilde{\pi}_{i}(u)\) are given by the mixtures

$$\widetilde{\pi}_i(\gamma) \propto\sum_n R_n(\gamma), \quad \widetilde{\pi}_i(u) \propto\sum _n Q_n(u) $$

with the identical first and second moments chosen as

$$\begin{aligned} \langle u \rangle=0,\quad \bigl\langle u^2\bigr\rangle =3,\quad \langle\gamma \rangle=1.5, \quad\bigl\langle \gamma^2\bigr\rangle =7.5, \quad\langle\gamma u\rangle=0. \end{aligned}$$

In particular, the seven initial densities in Sect. 5.1 with the same joint second-order statistics are obtained as follows (see Table 4 for the parameters used in (1)–(7)):

Table 4 The parameters used in (1)–(7)

(1) Joint density

$$\begin{aligned} \widetilde{p}_{1}(u,\gamma) = \frac{1}{2}\bigl(R_1( \gamma)+R_2(\gamma)\bigr)Q_1(u), \end{aligned}$$

where

$$\begin{aligned} R_i(\gamma) \propto\exp \biggl(-\frac{(\gamma-\overline{\gamma }_i)^2}{2\sigma^\gamma_i} \biggr), \quad\quad Q_1(u) \propto \exp \biggl(-\frac{(u-\overline{u}_1)^2}{2\sigma ^u_1} \biggr). \end{aligned}$$

(2) Joint density

$$\begin{aligned} \widetilde{p}_{2}(u,\gamma) = {\frac{1}{4}} \bigl(R_1(\gamma)+R_2(\gamma )\bigr) \bigl(Q_1(u)+Q_2(u)\bigr), \end{aligned}$$

where

$$\begin{aligned} R_i(\gamma)\propto \exp \biggl(-\frac{(\gamma-\overline{\gamma }_i)^2}{2\sigma^\gamma_i} \biggr), \quad\quad Q_i(u) \propto \exp \biggl(-\frac{(u-\overline{u}_i)^2}{2\sigma ^u_i} \biggr) \bigl(2+ \sin(u)\bigr). \end{aligned}$$

(3) Joint density

$$\begin{aligned} \widetilde{p}_{3}(u,\gamma) = {\frac{1}{4}} \bigl(R_1(\gamma)+R_2(\gamma )\bigr) \bigl(Q_1(u)+Q_2(u)\bigr), \end{aligned}$$

where

$$\begin{aligned} &R_i(\gamma) \propto \exp \biggl(-\frac{(\gamma-\overline{\gamma }_i)^2}{2\sigma^\gamma_i} \biggr) \biggl( \frac{3}{2}{+} \sin \biggl(\frac{\pi\gamma}{2} \biggr) \biggr),\\ & Q_i(u) \propto \exp \biggl(-\frac{(u-\overline{u}_i)^2}{2\sigma^u_i} \biggr) \biggl( \frac{3}{2}{+}\sin \biggl(\frac{\pi u}{2} \biggr) \biggr). \end{aligned}$$

(4) Joint density

$$\begin{aligned} \widetilde{p}_{4}(u,\gamma) = {\frac{1}{4}} \bigl(R_1(\gamma)+R_2(\gamma )\bigr) \bigl(Q_1(u)+Q_2(u)\bigr), \end{aligned}$$

where

$$\begin{aligned} R_i(\gamma) \propto \exp \biggl(-\frac{(\gamma-\overline{\gamma }_i)^2}{2\sigma^\gamma_i} \biggr) \frac{1}{ \gamma^2+1},\quad Q_i(u) \propto \exp \biggl(- \frac{(u-\overline {u}_i)^2}{2\sigma^u_i} \biggr)\frac{1}{u^2+1}. \end{aligned}$$

(5) Joint density

$$\begin{aligned} \widetilde{p}_{5}(u,\gamma) = \frac{1}{2}R_1( \gamma) \bigl(Q_1(u)+Q_2(u)\bigr), \end{aligned}$$

where

$$\begin{aligned} R_i(\gamma) \propto \exp \biggl(-\frac{(\gamma-\overline{\gamma }_i)^2}{2\sigma^\gamma_i} \biggr) \frac{1}{\gamma^2+1},\quad Q_i(u) \propto \exp \biggl(- \frac{(u-\overline {u}_i)^2}{2\sigma^u_i} \biggr). \end{aligned}$$

(6) Joint density

$$\begin{aligned} \widetilde{p}_{6}(u,\gamma) = \frac{1}{2}\bigl(R_1( \gamma)+R_2(\gamma)\bigr)Q_1(u), \end{aligned}$$

where

$$\begin{aligned} R_i(\gamma) \propto \exp \biggl(-\frac{(\gamma-\overline{\gamma }_i)^2}{2\sigma^\gamma_i} \biggr) \biggl( \frac{3}{2}+\sin \biggl(\frac{\pi\gamma}{2} \biggr) \biggr),\quad Q_1(u) \propto \exp \biggl(-\frac{(u-\overline{u}_1)^2}{2\sigma^u_1} \biggr). \end{aligned}$$

(7) Joint density

$$\begin{aligned} \widetilde{p}_{7}(u,\gamma) = \frac{1}{2}R_1( \gamma) \bigl(Q_1(u)+Q_2(u)\bigr), \end{aligned}$$

where

$$\begin{aligned} &R_1(\gamma) \propto \exp \biggl(-\frac{(\gamma-\overline{\gamma }_1)^2}{2\sigma^\gamma_1} \biggr), \\& Q_i(u) \propto \exp \biggl(-\frac{(u-\overline{u}_i)^2}{2\sigma ^u_i} \biggr) \biggl( \frac{3}{2} +\sin \biggl(\frac{\pi u}{2}-1 \biggr) \biggr). \end{aligned}$$

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Branicki, M., Chen, N., Majda, A.J. (2014). Non-Gaussian Test Models for Prediction and State Estimation with Model Errors. In: Ciarlet, P., Li, T., Maday, Y. (eds) Partial Differential Equations: Theory, Control and Approximation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41401-5_4

Download citation

Publish with us

Policies and ethics