Finite Volume Multilevel Approximation of the Shallow Water Equations



The authors consider a simple transport equation in one-dimensional space and the linearized shallow water equations in two-dimensional space, and describe and implement a multilevel finite-volume discretization in the context of the utilization of the incremental unknowns. The numerical stability of the method is proved in both cases.


Finite-volume methods Multilevel methods Shallow water equations Stability analysis 

Mathematics Subject Classification

65M60 65N21 65N99 


  1. 1.
    Adamy, K., Bousquet, A., Faure, S., et al.: A multilevel method for finite-volume discretization of the two-dimensional nonlinear shallow-water equations. Ocean Model. 33, 235–256 (2010). doi: 10.1016/j.ocemod.2010.02.006 CrossRefGoogle Scholar
  2. 2.
    Adamy, K., Pham, D.: A finite-volume implicit Euler scheme for the linearized shallow water equations: stability and convergence. Numer. Funct. Anal. Optim. 27(7–8), 757–783 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bellanger, M.: Traitement du Signal. Dunod, Paris (2006) Google Scholar
  4. 4.
    Bousquet, A., Marion, M., Temam, R.: Finite volume multilevel approximation of the shallow water equations II. (2013, in preparation) Google Scholar
  5. 5.
    Canuto, C., Hussaini, M.Y., Quarteroni, A., Zhang, T.A.: Spectral Methods, Evolution to Complex Geometries and Applications to Fluid Dynamics, Scientific Computation. Springer, Berlin (2007) Google Scholar
  6. 6.
    Chen, Q., Shiue, M.C., Temam, R.: The barotropic mode for the primitive equations. J. Sci. Comput. 45, 167–199 (2010). doi: 10.1007/s10915-009-9343-8. Special issue in memory of David Gottlieb MathSciNetCrossRefGoogle Scholar
  7. 7.
    Chen, Q., Shiue, M.C., Temam, R., Tribbia, J.: Numerical approximation of the inviscid 3D Primitive equations in a limited domain. Modél. Math. Anal. Numér. 45, 619–646 (2012). doi: 10.105/m2an/2011058 MathSciNetCrossRefGoogle Scholar
  8. 8.
    Dubois, T., Jauberteau, F., Temam, R.: Dynamic, Multilevel Methods and the Numerical Simulation of Turbulence. Cambridge University Press, Cambridge (1999) Google Scholar
  9. 9.
    Dautray, R., Lions, J.L.: Mathematical Analysis and Numerical Methods for Science and Technology. Springer, Berlin (1990–1992) CrossRefGoogle Scholar
  10. 10.
    Eymard, R., Gallouet, T., Herbin, R.: Finite volume methods. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. VII, pp. 713–1020. North-Holland, Amsterdam (2002) Google Scholar
  11. 11.
    Gie, G.M., Temam, R.: Cell centered finite-volume methods using Taylor series expansion scheme without fictitious domains. Int. J. Numer. Anal. Model. 7(1), 1–29 (2010) MathSciNetGoogle Scholar
  12. 12.
    Huang, A., Temam, R.: The linearized 2D inviscid shallow water equations in a rectangle: boundary conditions and well-posedness. (2013, to appear) Google Scholar
  13. 13.
    Leveque, R.J.: Finite Volume Methods for Hyperbolic Problems. Cambridge Texts in Applied Mathematics. Cambridge University Press, Cambridge (2002) CrossRefzbMATHGoogle Scholar
  14. 14.
    Lions, J.L., Temam, R., Wang, S.: Models of the coupled atmosphere and ocean (CAO I). Comput. Mech. Adv. 1, 5–54 (1993) MathSciNetzbMATHGoogle Scholar
  15. 15.
    Lions, J.L., Temam, R., Wang, S.: Numerical analysis of the coupled models of atmosphere and ocean (CAO II). Comput. Mech. Adv. 1, 55–119 (1993) MathSciNetzbMATHGoogle Scholar
  16. 16.
    Lions, J.L., Temam, R., Wang, S.: Splitting up methods and numerical analysis of some multiscale problems. Comput. Fluid Dyn. J. 5(2), 157–202 (1996). Special issue dedicated to A. Jameson MathSciNetGoogle Scholar
  17. 17.
    Marchuk, G.I.: Methods of numerical mathematics, 2nd edn. Applications of Mathematics, vol. 2. Springer, New York (1982). Translated from the Russian by Arthur A. Brown CrossRefzbMATHGoogle Scholar
  18. 18.
    Marion, M., Temam, R.: Nonlinear Galerkin methods. SIAM J. Numer. Anal. 26, 1139–1157 (1989) MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Marion, M., Temam, R.: Navier-Stokes equations, theory and approximation. In: Ciarlet, P.G., Lions, J.L. (eds.) Handbook of Numerical Analysis, vol. VI, pp. 503–689. North-Holland, Amsterdam (1998) Google Scholar
  20. 20.
    Rousseau, A., Temam, R., Tribbia, J.: The 3D primitive equations in the absence of viscosity: boundary conditions and well-posedness in the linearized case. J. Math. Pures Appl. 89(3), 297–319 (2008). doi: 10.1016/j.matpur.2007.12.001 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Rousseau, A., Temam, R., Tribbia, J.: Boundary value problems for the inviscid primitive equations in limited domains. In: Temam, R.M., Tribbia, J.J., Ciarlet, P.G. (eds.) Computational Methods for the Atmosphere and the Oceans, Handbook of Numerical Analysis, vol. XIV. Elsevier, Amsterdam (2008) Google Scholar
  22. 22.
    Strikwerda, J.C.: Finite Difference Schemes and Partial Differential Equations, 2nd edn. SIAM, Philadelphia (2004) CrossRefzbMATHGoogle Scholar
  23. 23.
    Temam, R.: Inertial manifolds and multigrid methods. SIAM J. Math. Anal. 21, 154–178 (1990) MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Temam, R., Tribbia, J.: Open boundary conditions for the primitive and Boussinesq equations. J. Atmos. Sci. 60, 2647–2660 (2003) MathSciNetCrossRefGoogle Scholar
  25. 25.
    Yanenko, N.N.: The Method of Fractional Steps, The Solution of Problems of Mathematical Physics in Several Variables. Springer, New York (1971). Translated from the Russian by T. Cheron. English translation edited by M. Holt zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.The Institute for Scientific Computing and Applied MathematicsIndiana UniversityBloomingtonUSA
  2. 2.Département Mathématique InformatiqueUniversité de Lyon, Ecole Centrale de Lyon, CNRS UMR 5208Ecully CedexFrance

Personalised recommendations