Skip to main content

The Rain on Underground Porous Media

Part I: Analysis of a Richards Model

  • Chapter
Partial Differential Equations: Theory, Control and Approximation

Abstract

The Richards equation models the water flow in a partially saturated underground porous medium under the surface. When it rains on the surface, boundary conditions of Signorini type must be considered on this part of the boundary. The authors first study this problem which results into a variational inequality and then propose a discretization by an implicit Euler’s scheme in time and finite elements in space. The convergence of this discretization leads to the well-posedness of the problem.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Alt, H.W., Luckhaus, S.: Quasilinear elliptic-parabolic differential equations. Math. Z. 183, 311–341 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alt, H.W., Luckhaus, S., Visintin, A.: On nonstationary flow through porous media. Ann. Mat. Pura Appl. 136, 303–316 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bernardi, C., El Alaoui, L., Mghazli, Z.: A posteriori analysis of a space and time discretization of a nonlinear model for the flow in variably saturated porous media. Submitted

    Google Scholar 

  4. Berninger, H.: Domain decomposition methods for elliptic problems with jumping nonlinearities and application to the Richards equation. Ph.D. Thesis, Freie Universität, Berlin, Germany (2007)

    Google Scholar 

  5. Brezzi, F., Hager, W.W., Raviart, P.A.: Error estimates for the finite element solution to variational inequalities. II. Mixed methods. Numer. Math. 31, 1–16 (1978/1979)

    Article  MathSciNet  Google Scholar 

  6. Fabrié, P., Gallouët, T.: Modelling wells in porous media flows. Math. Models Methods Appl. Sci. 10, 673–709 (2000)

    MathSciNet  MATH  Google Scholar 

  7. Gabbouhy, M.: Analyse mathématique et simulation numérique des phénomènes d’écoulement et de transport en milieux poreux non saturés. Application à la région du Gharb. Ph.D. Thesis, University Ibn Tofail, Kénitra, Morocco (2000)

    Google Scholar 

  8. Girault, V., Raviart, P.A.: Finite Element Approximation of the Navier-Stokes Equations. Lecture Notes in Mathematics, vol. 749. Springer, Berlin (1979)

    Book  MATH  Google Scholar 

  9. Girault, V., Raviart, P.A.: Finite Element Methods for Navier-Stokes Equations, Theory and Algorithms. Springer, Berlin (1986)

    Book  MATH  Google Scholar 

  10. Glowinski, R., Lions, J.L., Trémolières, R.: Analyse numérique des inéquations variationnelles. 2. Applications aux phénomènes stationnaires et d’évolution, Collection. Méthodes Mathématiques de l’Informatique, vol. 5. Dunod, Paris (1976)

    Google Scholar 

  11. Lions, J.L., Magenes, E.: Problèmes aux limites non homogènes et applications, vol. I. Dunod, Paris (1968)

    MATH  Google Scholar 

  12. Nochetto, R.H., Verdi, C.: Approximation of degenerate parabolic problems using numerical integration. SIAM J. Numer. Anal. 25, 784–814 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  13. Radu, F., Pop, I.S., Knabner, P.: Order of convergence estimates for an Euler implicit, mixed finite element discretization of Richards’ equation. SIAM J. Numer. Anal. 42, 1452–1478 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  14. Rajagopal, K.R.: On a hierarchy of approximate models for flows of incompressible fluids through porous solid. Math. Models Methods Appl. Sci. 17, 215–252 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Richards, L.A.: Capillary conduction of liquids through porous mediums. Physics 1, 318–333 (1931)

    Article  MATH  Google Scholar 

  16. Schneid, E., Knabner, P., Radu, F.: A priori error estimates for a mixed finite element discretization of the Richards’ equation. Numer. Math. 98, 353–370 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  17. Sochala, P., Ern, A.: Numerical methods for subsurface flows and coupling with runoff. (2013, to appear)

    Google Scholar 

  18. Sochala, P., Ern, A., Piperno, S.: Mass conservative BDF-discontinuous Galerkin/explicit finite volume schemes for coupling subsurface and overland flows. Comput. Methods Appl. Mech. Eng. 198, 2122–2136 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Woodward, C.S., Dawson, C.N.: Analysis of expanded mixed finite element methods for a nonlinear parabolic equation modeling flow into variably saturated porous media. SIAM J. Numer. Anal. 37, 701–724 (2000)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christine Bernardi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Bernardi, C., Blouza, A., El Alaoui, L. (2014). The Rain on Underground Porous Media. In: Ciarlet, P., Li, T., Maday, Y. (eds) Partial Differential Equations: Theory, Control and Approximation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41401-5_2

Download citation

Publish with us

Policies and ethics