Skip to main content

Mixing Monte-Carlo and Partial Differential Equations for Pricing Options

  • Chapter
Partial Differential Equations: Theory, Control and Approximation

Abstract

There is a need for very fast option pricers when the financial objects are modeled by complex systems of stochastic differential equations. Here the authors investigate option pricers based on mixed Monte-Carlo partial differential solvers for stochastic volatility models such as Heston’s. It is found that orders of magnitude in speed are gained on full Monte-Carlo algorithms by solving all equations but one by a Monte-Carlo method, and pricing the underlying asset by a partial differential equation with random coefficients, derived by Itô calculus. This strategy is investigated for vanilla options, barrier options and American options with stochastic volatilities and jumps optionally.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Achdou, Y., Pironneau, O.: Numerical Methods for Option Pricing. SIAM, Philadelphia (2005)

    Book  Google Scholar 

  2. Amin, K., Khanna, A.: Convergence of American option values from discrete- to continuous-time financial models. Math. Finance 4, 289–304 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barth, A., Schwab, C., Zollinger, N.: Multi-level Monte Carlo finite element method for elliptic PDEs with stochastic coefficients. Numer. Math. 119(1), 123–161 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bates, D.S.: Jumps and stochastic volatility: exchange rate processes implicit Deutsche mark options. Rev. Financ. Stud. 9(1), 69–107 (1996)

    Article  Google Scholar 

  5. Black, F., Scholes, M.: The pricing of options and corporate liabilities. J. Polit. Econ. 81, 637–659 (1973)

    Article  Google Scholar 

  6. Boyle, P.: Options: a Monte Carlo approach. J. Financ. Econ. 4, 323–338 (1977)

    Article  Google Scholar 

  7. Carr, P., Madan, D.: Option valuation using the fast Fourier transform. J. Comput. Finance 2(4), 61–73 (1999)

    Google Scholar 

  8. Dupire, B.: Pricing with a smile. Risk 18–20 (1994)

    Google Scholar 

  9. George, P.L., Borouchaki, H.: Delaunay triangulation and meshing. Hermès, Paris (1998). Application to Finite Elements. Translated from the original, Frey, P.J., Canann, S.A. (eds.), French (1997)

    MATH  Google Scholar 

  10. Glasserman, P.: Monte-Carlo Methods in Financial Engineering, Stochastic Modeling and Applied Probability vol. 53. Springer, New York (2004)

    Google Scholar 

  11. Hecht, F., Pironneau, O., Le Yaric, A., et al.:. freefem++ documentation. http://www.freefem.org

  12. Heston, S.: A closed form solution for options with stochastic volatility with application to bond and currency options. Rev. Financ. Stud. 6(2), 327–343 (1993)

    Article  Google Scholar 

  13. Lewis, A.: A simple option formula for general jump-diffusion and other exponential Lévy processes (2001). http://www.optioncity.net

  14. Loeper, G., Pironneau, O.: A mixed PDE/Monte-Carlo method for stochastic volatility models. C. R. Acad. Sci., Ser. 1 Math. 347, 559–563 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  15. Merton, R.C.: Option pricing when underlying stock returns are discontinuous. J. Financ. Econ. 3, 125–144 (1976)

    Article  MATH  Google Scholar 

  16. Pironneau, O.: Dupire Identities for Complex Options. C. R. Math. Acad. Sci. (2013, to appear)

    Google Scholar 

  17. Li, X.S., Demmel, J.W., Gilbert, J.R.: The superLU library. http://crd.lbl.gov/xiaoye/SuperLU

  18. Wilmott, P., Howison, S., Dewynne, J.: The Mathematics of Financial Derivatives. Cambridge University Press, Cambridge (1995)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Lipp .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lipp, T., Loeper, G., Pironneau, O. (2014). Mixing Monte-Carlo and Partial Differential Equations for Pricing Options. In: Ciarlet, P., Li, T., Maday, Y. (eds) Partial Differential Equations: Theory, Control and Approximation. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41401-5_13

Download citation

Publish with us

Policies and ethics