Advertisement

Exact Synchronization for a Coupled System of Wave Equations with Dirichlet Boundary Controls

Chapter

Abstract

In this paper, the exact synchronization for a coupled system of wave equations with Dirichlet boundary controls and some related concepts are introduced. By means of the exact null controllability of a reduced coupled system, under certain conditions of compatibility, the exact synchronization, the exact synchronization by groups, and the exact null controllability and synchronization by groups are all realized by suitable boundary controls.

Keywords

Exact null controllability Exact synchronization Exact synchronization by groups 

Mathematics Subject Classification

35B37 93B05 93B07 

References

  1. 1.
    Alabau-Boussouira, F.: A two-level energy method for indirect boundary observability and controllability of weakly coupled hyperbolic systems. SIAM J. Control Optim. 42, 871–906 (2003) MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Fujisaka, H., Yamada, T.: Stability theory of synchronized motion in coupled-oscillator systems. Prog. Theor. Phys. 69, 32–47 (1983) MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Garofalo, N., Lin, F.: Unique continuation for elliptic operators: a geometric-variational approach. Commun. Pure Appl. Math. 40, 347–366 (1987) MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Huygens, C., Horologium Oscillatorium Sive de Motu Pendulorum ad Horologia Aptato Demonstrationes Geometricae, Apud F. Muguet, Parisiis (1673) Google Scholar
  5. 5.
    Komornik, V., Loreti, P.: Fourier Series in Control Theory. Springer, New York (2005) zbMATHGoogle Scholar
  6. 6.
    Krabs, W.: On Moment Theory and Controllability of One-dimensional Vibrating Systems and Heating Processes. Lecture Notes in Control and Information Sciences, vol. 173. Springer, Berlin (1992) CrossRefzbMATHGoogle Scholar
  7. 7.
    Yu, L.: Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems and its applications. Math. Methods Appl. Sci. 33, 273–286 (2010) MathSciNetzbMATHGoogle Scholar
  8. 8.
    Li, T.T., Rao, B.P.: Strong (weak) exact controllability and strong (weak) exact observability for quasilinear hyperbolic systems. Chin. Ann. Math. 31B(5), 723–742 (2010) MathSciNetCrossRefGoogle Scholar
  9. 9.
    Li, T.T., Rao, B.P.: Asymptotic controllability for linear hyperbolic systems. Asymptot. Anal. 72, 169–187 (2011) MathSciNetzbMATHGoogle Scholar
  10. 10.
    Lions, J.L., Exacte, C.: Perturbations et Stabilisation de Systèms Distribués vol. 1. Masson, Paris (1988) Google Scholar
  11. 11.
    Liu, Z., Rao, B.P.: A spectral approach to the indirect boundary control of a system of weakly coupled wave equations. Discrete Contin. Dyn. Syst. 23, 399–414 (2009) MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Loreti, P., Rao, B.P.: Optimal energy decay rate for partially damped systems by spectral compensation. SIAM J. Control Optim. 45, 1612–1632 (2006) MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Mehrenberger, M.: Observability of coupled systems. Acta Math. Hung. 103, 321–348 (2004) MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Wang, K.: Exact boundary controllability for a kind of second-order quasilinear hyperbolic systems. Chin. Ann. Math. 32B(6), 803–822 (2011) CrossRefGoogle Scholar
  15. 15.
    Young, R.: An Introduction to Nonharmonic Fourier Series. Academic Press, New York (1980) zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Nonlinear Mathematical Modeling and Methods Laboratory, Shanghai Key Laboratory for Contemporary Applied Mathematic, School of Mathematical SciencesFudan UniversityShanghaiChina
  2. 2.Institut de Recherche Mathématique AvancéeUniversité de StrasbourgStrasbourgFrance

Personalised recommendations