Skip to main content

Laminar-Turbulent Transition and Turbulence

  • Chapter
Three-Dimensional Attached Viscous Flow

Abstract

The state of the boundary layer, laminar or turbulent, influences the drag, the performance of the wing, of stabilization and control devices etc., and the flight characteristics of an airplane. A given flight vehicle is considered as “transition insensitive”, if the location of laminar-turbulent transition does not affect these items.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hirschel, E.H., Stock, H.-W., Cousteix, J.: Current Turbulence Modelling in Aircraft Design. In: Rodi, W., Martelli, F. (eds.) Proc. 2nd International Symposium on Engineering Turbulence Modelling and Measurements 2, Florence, Italy, May 31-June 2, pp. 665–690. Elsevier Science Publishers B.V., Amsterdam (1993)

    Google Scholar 

  2. Hirschel, E.H.: Present and Future Aerodynamic Process Technologies at Dasa Military Aircraft. Viewgraphs presented at the ERCOFTAC Industrial Technology Topic Meeting, Florence, Italy, October 26. Dasa-MT63-AERO-MT-1018, Ottobrunn, Germany (1999)

    Google Scholar 

  3. Shea, J.F.: Report of the Defense Science Board Task Force on the National Aerospace Plane (NASP). Office of the Under Secretary of Defense for Acquisition, Washington, D. C. (1988)

    Google Scholar 

  4. Hirschel, E.H.: Basics of Aerothermodynamics, AIAA, Reston, Va. Progress in Astronautics and Aeronautics, vol. 204. Springer, New York (2004)

    Google Scholar 

  5. Van der Bliek, J.A.: ETW, a European Resource for the World of Aeronautics. The History of ETW in the Context of European Aeronautical Research and Development Cooperation. ETW, Köln-Porz (1996)

    Google Scholar 

  6. Green, J., Quest, J.: A Short History of the European Transonic Wind Tunnel ETW. Progress in Aerospace Sciences 47, 319–368 (2011)

    Article  Google Scholar 

  7. Polhamus, E.C., Kilgore, R.A., Adcock, J.B., Ray, E.J.: The Langley Cryogenic High Reynolds Number Wind-Tunnel Program. Astronautics and Aeronautics 12(10) (1974)

    Google Scholar 

  8. Paryz, R.W.: Upgrades at the NASA Langley Research Center National Transonic Facility. AIAA-Paper 2012-0102 (2012)

    Google Scholar 

  9. Schlichting, H., Gersten, K.: Boundary Layer Theory, 8th edn. Springer, Heidelberg (2000)

    MATH  Google Scholar 

  10. Cebeci, T., Cousteix, J.: Modeling and Computation of Boundary-Layer Flows, 2nd edn. Horizons Publ., Springer, Long Beach, Heidelberg (2005)

    Google Scholar 

  11. N.N.: Advances in Laminar-Turbulent Transition Modelling. NATO Research and Technology Organisation (RTO), RTO-EN-AVT-151 (2008) ISBN 978-92-837-0900-6

    Google Scholar 

  12. Schmid, P.J., Henningson, D.S.: Stability and Transition in Shear Flows. Springer, Heidelberg (2001)

    Book  MATH  Google Scholar 

  13. Morkovin, M.V.: Critical Evaluation of Transition from Laminar to Turbulent Shear Layers with Emphasis on Hypersonically Travelling Bodies. Air Force Flight Dynamics Laboratory, Wright-Patterson Air Force Base, AFFDL-TR-68-149 (1969)

    Google Scholar 

  14. Reshotko, E.: Boundary-Layer Stability and Transition. Annual Review of Fluid Mechanics 8, 311–349 (1976)

    Article  Google Scholar 

  15. Schubauer, G.B., Skramstadt, H.K.: Laminar Boundary Layer Oscillations and Transition on a Flat Plate. NACA Rep. 909 (1943)

    Google Scholar 

  16. Kendall, J.M.: Supersonic Boundary-Layer Stability Experiments. In: McCauley, W.D. (ed.) Proceedings of Boundary Layer Transition Study Group Meeting, vol. II, Air Force Report No. BSD-TR-67-213 (1967)

    Google Scholar 

  17. Mack, L.M.: Boundary-Layer Stability Theory. JPL 900-277 (1969)

    Google Scholar 

  18. Arnal, D., Casalis, G., Houdeville, R.: Practical Transition Prediction Methods: Subsonic and Transonic Flows. In: Advances in Laminar Turbulent Transition Modeling. Von Kármán Inst. Lecture Series, Rhode-St-Genèse, Belgium, pp. 7-1–7-33 (2008)

    Google Scholar 

  19. Menter, F.R., Langtry, R.B., Likki, S.R., Suzen, Y.B., Hung, P.G., Völker, S.: A Correlation-Based Transition Model Using Local Variables. Part I–Model Formulation. ASME Paper No. GT2004–53452 (2004)

    Google Scholar 

  20. Mack, L.M.: Stability of the Compressible Laminar Boundary Layer According to a Direct Numerical Solution. AGARDograph 97(Pt. I), 329–362 (1965)

    Google Scholar 

  21. McDonald, H., Fish, R.W.: Practical Calculations of Transitional Boundary Layers. Int. Journal of Heat and Mass Transfer 16, 25–53 (1973)

    Article  Google Scholar 

  22. Mack, L.M.: Boundary-Layer Linear Stability Theory. AGARD R-709, 3-1–3-81 (1984)

    Google Scholar 

  23. Arnal, D.: Laminar Turbulent Transition. In: Murthy, T.K.S. (ed.) Computational Methods in Hypersonic Aerodynamics, pp. 233–264. Computational Mechanics Publications and Kluwer Academic Publishers (1991)

    Google Scholar 

  24. Hirschel, E.H.: Entstehung der Turbulenz in Grenzschichten - Eine Einführung. DFVLR IB 252 - 79 A 08 (1979)

    Google Scholar 

  25. Lang, M., Marxen, O., Rist, U., Wagner, S.: A Combined Numerical and Experimental Investigation of Transition in a Laminar Separation Bubble. In: Wagner, S., Kloker, M., Rist, U. (eds.) Recent Results in Laminar-Turbulent Transition. NNFM, vol. 86, pp. 149–164. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  26. Lees, L., Lin, C.C.: Investigation of the Stability of the Boundary Layer in a Compressible Fluid. NACA TN 1115 (1946)

    Google Scholar 

  27. Lees, L.: The Stability of the Laminar Boundary Layer in a Compressible Fluid. NACA TN 876 (1947)

    Google Scholar 

  28. Mack, L.M.: Early History of Compressible Linear Stability Theory. In: Fasel, H.F., Saric, W.S. (eds.) Proc. IUTAM Symposium on Laminar-Turbulent Transition, Sedona, AZ, USA, pp. 9–34. Springer, Heidelberg (1999, 2000)

    Google Scholar 

  29. Theofilis, V., Fedorov, A.V., Obrist, D., Dallmann, U.C.: The Extended Görtler-Hämmerlin Model for Linear Instability of Three-Dimensional Incompressible Swept Attachment-Line Boundary-Layer Flow. J. Fluid Mechanics 487, 271–313 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  30. Bertolotti, F.P.: On the Connection between Cross-Flow Vortices and Attachment-Line Instability. In: Fasel, H.F., Saric, W.S. (eds.) Proc. IUTAM Symposium on Laminar-Turbulent Transition, Sedona, AZ, USA, 1999, pp. 625–630. Springer, Heidelberg (2000)

    Google Scholar 

  31. Pfenninger, W.: Flow Phenomena at the Leading Edge of Swept Wings. Recent Developments in Boundary Layer Research - Part IV. AGARDograph 97 (1965)

    Google Scholar 

  32. Gaster, M.: On the Flow along Swept Leading Edges. The Aeronautical Quarterly XVIII, 165–184 (1967)

    Google Scholar 

  33. Cumpsty, N.A., Head, M.R.: The Calculation of Three-Dimensional Turbulent Boundary Layers. Part II: Attachment Line Flow on an Infinite Swept Wing. The Aeronautical Quarterly XVIII(Pt. 2), 99–113 (1967)

    Google Scholar 

  34. Poll, D.I.A.: Boundary Layer Transition on the Windward Face of Space Shuttle During Re-Entry. AIAA-Paper 85-0899 (1985)

    Google Scholar 

  35. Arnal, D.: Laminar-Turbulent Transition Problems in Supersonic and Hypersonic Flows. AGARD R-761, 8-1–8-45 (1988)

    Google Scholar 

  36. Poll, D.I.A.: Some Aspects of the Flow near a Swept Attachment Line with Particular Reference to Boundary Layer Transition. Doctoral thesis, Cranfield, U. K., CoA Report 7805/L (1978)

    Google Scholar 

  37. Thiede, P. (ed.): Aerodynamic Drag Reduction Technologies. Proc. of the CEAS/DragNet European Drag Reduction Conference, Potsdam, Germany, June 19-21, 2000. NNFM, vol. 76. Springer, Heidelberg (2001)

    Google Scholar 

  38. Gaster, M.: A Simple Device for Preventing Turbulent Contamination on Swept Leading Edges. J. Royal Aeronautical Soc. 69, 788 (1965)

    Google Scholar 

  39. Henke, R.: Airbus A 320 HLF Fin Flight Test. In: Thiede, P. (ed.) Aerodynamic Drag Reduction Technologies. Proc. CEAS/DragNet European Drag Reduction Conference, Potsdam, Germany, June 19-21. NNFM, vol. 76, pp. 31–38. Springer, Heidelberg (2001)

    Google Scholar 

  40. Seitz, A., Kruse, M., Wunderlich, T., Bold, J., Heinrich, L.: The DLR Project LamAiR: Design of a NLF Forward Swept Wing for Short and Medium Range Transport Application. AIAA-Paper 2011-3526 (2011)

    Google Scholar 

  41. Owen, P.R., Randall, D.G.: Boundary Layer Transition on a Swept Back Wing. R.A.E. TM 277 (1952), R.A.E. TM 330 (1953)

    Google Scholar 

  42. Bippes, H.: Basic Experiments on Transition in Three-Dimensional Boundary Layers Dominated by Crossflow Instability. Progress in Aerospace Sciences 35(3-4), 363–412 (1999)

    Article  Google Scholar 

  43. Saric, W.S., Reed, H.L., White, E.B.: Stability and Transition of Three-Dimensional Boundary Layers. Annual Review of Fluid Mechnics 35, 413–440 (2003)

    Article  MathSciNet  Google Scholar 

  44. Kipp, H.W., Helms, V.T.: Some Observations on the Occurance of Striation Heating. AIAA-Paper 85-0324 (1985)

    Google Scholar 

  45. Görtler, H.: Über den Einfluß der Wandkrümmung auf die Entstehung der Turbulenz. ZAMM 20, 138–147 (1940)

    Article  Google Scholar 

  46. Liepmann, H.W.: Investigation of Boundary-Layer Transition on Concave Walls. NACA ACR 4J28 (1945)

    Google Scholar 

  47. Tani, I., Aihara, Y.: Görtler Vortices and Boundary-Layer Transition. ZAMP 20, 609–618 (1969)

    Article  Google Scholar 

  48. Saric, W.S.: Görtler Vortices. Annual Review of Fluid Mechnics 26, 379–409 (1994)

    Article  MathSciNet  Google Scholar 

  49. Narasimha, R.: The Three Archetypes of Relaminarisation. In: Proc. 6th Canadian Conf. of Applied Mechanics, vol. 2, pp. 503–518 (1977)

    Google Scholar 

  50. Narasimha, R., Sreenivasan, K.R.: Relaminarisation in Highly Accelarated Turbulent Boundary Layers. J. Fluid Mechanics 61, 417–447 (1973)

    Article  Google Scholar 

  51. Launder, B.E., Jones, W.P.: On the Prediction of Laminarisation. ARC CP 1036 (1969)

    Google Scholar 

  52. White, F.M.: Viscous Fluid Flow, 2nd edn. McGraw-Hill, New York (1991)

    Google Scholar 

  53. Hirschel, E.H.: The Influence of the Free-Stream Reynolds Number on Transition in the Boundary Layer on an Infinite Swept Wing. AGARD R-602, 1-1–1-11 (1973)

    Google Scholar 

  54. Mukund, R., Viswanath, P.R., Crouch, J.D.: Relaminarization and Retransition of Accelerated Turbulent Boundary Layers on a Convex Surface. In: Fasel, H.F., Saric, W.S. (eds.) Proc. IUTAM Symposium on Laminar-Turbulent Transition, Sedona, AZ, USA, 1999, pp. 243–248. Springer, Heidelberg (2000)

    Google Scholar 

  55. N. N.: Boundary Layer Simulation and Control in Wind Tunnels. AGARD-AR-224 (1988)

    Google Scholar 

  56. Poll, D.I.A.: Laminar-Turbulent Transition. AGARD-AR-319 I, 3-1–3-20 (1996)

    Google Scholar 

  57. Reshotko, E.: Environment and Receptivity. AGARD R-709, 4-1–4-11 (1984)

    Google Scholar 

  58. Schumann, U., Konopka, P., Baumann, R., Busen, R., Gerz, T., Schlager, H., Schulte, P., Volkert, H.: Estimate of Diffusion Parameters of Aircraft Exhaust Plumes near the Tropopause from Nitric Oxide and Turbulence Measurements. J. of Geophysical Research 100(D7), 14,147–14,162 (1995)

    Google Scholar 

  59. Saric, W.S., Reed, H.L., Kerschen, E.J.: Boundary-Layer Receptivity to Freestream Disturbances. Annual Review of Fluid Mechnics 34, 291–319 (2002)

    Article  MathSciNet  Google Scholar 

  60. Wilcox, D.C.: Turbulence Modelling for CFD. DCW Industries, La Cañada, CAL., USA (1998)

    Google Scholar 

  61. Menter, F.R.: Influence of Freestream Values on k − ω Turbulence Model Predictions. AIAA J. 33(12), 1657–1659 (1995)

    Google Scholar 

  62. Celic, A.: Performance of Modern Eddy-Viscosity Turbulence Models. Doctoral Thesis, Universität Stuttgart, Germany (2004)

    Google Scholar 

  63. Schrauf, G.: Industrial View on Transition Prediction. In: Wagner, S., Kloker, M., Rist, U. (eds.) Recent Results in Laminar-Turbulent Transition. NNFM, vol. 86, pp. 111–122. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  64. Malik, M.R.: COSAL—A Black Box Compressible Stability Analysis Code for Transition Prediction in Three-Dimensional Boundary Layers. NASA CR 165925 (1982)

    Google Scholar 

  65. Ehrenstein, U., Dallmann, U.: Ein Verfahren zur linearen Stabilitätsanalyse von dreidimensionalen, kompressiblen Grenzschichten. DFVLR IB 221-88 A 20 (1988)

    Google Scholar 

  66. Laburthe, F.: Problème de stabilité linéaire et prévision de la transition dans des configurations tridimensionelles, incompressibles et compressibles (Problems of Linear Stability and Prediction of Transition in Three-Dimensional, Incompressible and Compressible Flows). Doctoral Thesis, ENSAE, Toulouse, France (1992)

    Google Scholar 

  67. Malik, M.R.: Boundary-Layer Transition Prediction Toolkit. AIAA-Paper 97-1904 (1997)

    Google Scholar 

  68. Schrauf, G.: Curvature Effects for Three-Dimensional, Compressible Boundary Layer Stability. Zeitschrift Für Flugwissenschaften und Weltraumforschung (ZFW) 16, 119–127 (1992)

    Google Scholar 

  69. Schrauf, G.: COAST3—A Compressible Stability Code. User’s Guide and Tutorial. Deutsche Airbus, TR EF-040/98 (1998)

    Google Scholar 

  70. Schrauf, G.: LILO 2.1. User’s Guide and Tutorial. GSSC Technical Report 6 (2004)

    Google Scholar 

  71. Herbert, T.: Parabolized Stability Equations. Annual Review of Fluid Mechanics, Palo Alto 29, 245–283 (1997)

    Article  MathSciNet  Google Scholar 

  72. Bertolotti, F.P.: Linear and Nonlinear Stability of Boundary Layers with Streamwise Varying Properties. Doctoral Thesis, Ohio State University, USA (1991)

    Google Scholar 

  73. Chang, C.-L., Malik, M.R., Erlebacher, G., Hussaini, M.Y.: Compressible Stability of Growing Boundary Layers Using Parabolized Stability Equations. AIAA-Paper 91-1636 (1991)

    Google Scholar 

  74. Simen, M.: Lokale Und nichtlokale Instabilität hypersonischer Grenzschichtströmungen (Local and Non-Local Instability of Hypersonic Boundary-Layer Flows). Doctoral Thesis, Universität Stuttgart, Germany (1993)

    Google Scholar 

  75. Simen, M., Bertolotti, F.P., Hein, S., Hanifi, A., Henningson, D.S., Dallmann, U.: Nonlocal and Nonlinear Stability Theory. In: Wagner, S., Periaux, J., Hirschel, E.H. (eds.) Computational Fluid Dynamics 1994, pp. 169–179. John Wiley and Sons, Chichester (1994)

    Google Scholar 

  76. Hein, S.: Nonlinear, Nonlocal Transition Analysis. Doctoral Thesis. Universität Stuttgart, Germany (2004)

    Google Scholar 

  77. Mughal, M.S., Hall, P.: Parabolized Stability Equations and Transition Prediction for Compressible Swept-Wing Flows. Imperial College for Science, Technology and Medicine, final report on DTI contract ASF/2583U (1996)

    Google Scholar 

  78. Salinas, H.: Stabilité linéaire et faiblement non linéaire d’une couche limite laminaire compressible tridimensionelle par l’approche PSE (Linear and Weakly Non-Linear Stability of a Laminar, Compressible Three-Dimensional Boundary Layer with the PSE Approach). Doctoral Thesis, ENSAE, Toulouse, France (1998)

    Google Scholar 

  79. Chang, C.-L.: Langley stability and transition analysis code (LASTRAC), version 1.2, user manual. NASA TM-2004-213233 (2004)

    Google Scholar 

  80. Michel, R.: Etude de la transition sur les profiles d’aile—Établissement d’un critère de détermination du point de transition et calcul de la trainée de profil en incompressible. ONERA Rapport 1/1578 A (1951)

    Google Scholar 

  81. Granville, P.S.: The Calculation of the Viscous Drag of Bodies of Revolution. David Taylor Model Basin Report 849 (1953)

    Google Scholar 

  82. Crabtree, L.F.: Prediction of Transition in the Boundary Layer on an Airfoil. J. Royal Aeronautical Soc. 62, 525–527 (1958)

    Google Scholar 

  83. Hall, D.J., Gibbings, J.C.: Influence of Free-Stream Turbulence and Pressure Gradient Upon Boundary Layer Transition. J. Mechanical Eng. Science 14, 134–146 (1972)

    Article  Google Scholar 

  84. Dunham, J.: Predictions of Boundary Layer Transition on Turbomachines. AGARD PEP Ad-hoc Study, Paris (1972)

    Google Scholar 

  85. Arnal, D., Habiballah, M., Coustols, E.: Laminar Stability Theory and Transition Criteria in Two- and Three-Dimensional Flow. Rech. Aérospatiale 2 (1984)

    Google Scholar 

  86. Poll, D.I.A., Tran, P., Arnal, D.: Capabilities and Limitations of Available Transition Prediction Tools. Aerospatiale TX/AP no. 114 779 (1994)

    Google Scholar 

  87. Van Ingen, J.L.: A Suggested Semi-Empirical Method for the Calculation of the Boundary-Layer Transition Region. Reports UTH71 and UTH74, Delft, The Netherlands (1956)

    Google Scholar 

  88. Smith, A.M.O., Gamberoni, N.: Transition, Pressure Gradient and Stability Theory. Douglas Report No. ES 26388 (1956)

    Google Scholar 

  89. Arnal, D.: Boundary-Layer Transition: Predictions Based on Linear Theory. AGARD-R-793, 2-1–2-63 (1994)

    Google Scholar 

  90. Mack, L.M.: Transition Prediction and Linear Stability Theory. AGARD CP-224, 1-1–1-22 (1977)

    Google Scholar 

  91. Stock, H.-W., Haase, W.: Some Aspects of Linear Stability Calculations in Industrial Applications. In: Henkes, R.A.W.M., van Ingen, J.L. (eds.) Transitional Boundary Layers in Aeronautics, pp. 225–238. North-Holland Press, Amsterdam (1996)

    Google Scholar 

  92. Arnal, D.: Transition Prediction in Transonic Flow. In: Zierep, J., Oertel, H. (eds.) Symposium Transonicum III, pp. 253–262. Springer, Heidelberg (1988)

    Google Scholar 

  93. Stock, H.-W.: e N Transition Prediction in Three-Dimensional Boundary Layers on Inclined Prolate Spheroids. AIAA J. 44, 108–118 (2006)

    Article  Google Scholar 

  94. Krimmelbein, N., Radespiel, R.: Transition Prediction for Three-Dimensional Flows Using Parallel Computation. Computers & Fluids 38, 121–136 (2009)

    Article  MATH  Google Scholar 

  95. Bertolotti, F.P.: The Equivalent Forcing Model for Receptivity Analysis with Application to the Construction of a High-Performance Skin-Perforation Pattern for Laminar Flow Control. In: Wagner, S., Kloker, M., Rist, U. (eds.) Recent Results in Laminar-Turbulent Transition. NNFM, vol. 86, pp. 25–36. Springer, Heidelberg (2004)

    Chapter  Google Scholar 

  96. Hill, D.C.: Adjoint Systems and their Role in the Receptivity Problem for Boundary Layers. J. Fluid Mechanics 292, 183–204 (1995)

    Article  MATH  Google Scholar 

  97. Dussauge, J.-P., Fernholz, H.H., Smith, R.W., Finley, P.J., Smits, A.J., Spina, E.F.: Turbulent Boundary Layers in Subsonic and Supersonic Flow. AGARDograph 335 (1996)

    Google Scholar 

  98. Aupoix, B.: Introduction to Turbulence Modelling for Turbulent Flows. In: Benocci, C., van Beek, J.P.A.J. (eds.) Introduction to Turbulence Modeling, VKI, Rhode Saint, Genèse, Belgium. VKI Lecture Series 2002-02 (2002)

    Google Scholar 

  99. Pope, S.B.: Turbulent Flows. Cambridge University Press, Cambridge (2000)

    Book  MATH  Google Scholar 

  100. Piquet, J.: Turbulent Flows: Models and Physics. Springer, Heidelberg (2001) revised second printing

    Google Scholar 

  101. Durbin, P.A., Pettersson Reif, B.A.: Statistical Theory and Modeling for Turbulent Flow, 2nd edn. John Wiley, Hoboken (2011)

    Google Scholar 

  102. Peng, S.-H., Doerffer, P., Haase, W. (eds.): Progress in Hybrid RANS-LES Modelling. NNFM, vol. 111. Springer, Heidelberg (2010)

    Google Scholar 

  103. Fu, S., Haase, W., Peng, S.H., Schwamborn, D. (eds.): Progress in Hybrid RANS-LES Modelling. Papers contributed to the 4th Symp. on Hybrid RANS-LES Methods. NNFM, vol. 117. Springer, Heidelberg (2012)

    Google Scholar 

  104. Menter, F.R., Schütze, J., Gritskevich, M.: Global vs. Zonal approaches in hybrid RANS-LES turbulence modelling. In: Fu, S., Haase, W., Peng, S.-H., Schwamborn, D. (eds.) Progress in Hybrid RANS-LES Modelling. NNFM, vol. 117, pp. 15–28. Springer, Heidelberg (2012)

    Google Scholar 

  105. Haase, W., Chaput, E., Elsholz, E., Leschziner, M.A., Müller, U.R. (eds.): ECARP—European Computational Aerodynamics Research Project. Validation of CFD Codes and Assessment of Turbulence Models. NNFM, vol. 58. Vieweg, Braunschweig Wiesbaden (1997)

    Google Scholar 

  106. Dervieux, A., Braza, M., Dussauge, J.-P. (eds.): Computation and Comparison of Efficient Turbulence Models for Aeronautics—European Research Project ETMA. NNFM, vol. 65. Vieweg, Braunschweig Wiesbaden (1998)

    MATH  Google Scholar 

  107. Haase, W., Aupoix, B., Bunge, U., Schwamborn, D. (eds.): FLOMANIA—A European Initiative on Flow Physics Modelling. Results of the European Union funded project, 2002–2004. NNFM, vol. 94. Springer, Heidelberg (2006)

    MATH  Google Scholar 

  108. Schwamborn, D., Strelets, M.: ATAAC—An EU-Project Dedicated to Hybrid RANS/LES Methods. In: Fu, S., Haase, W., Peng, S.-H., Schwamborn, D. (eds.) Progress in Hybrid RANS-LES Modelling. NNFM, vol. 117, pp. 59–75. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

  109. Vassberg, J.C., Tinoco, E.N., Mani, M., Rider, B., Zickuhr, T., Levy, D.W., Brodersen, O.P., Eisfeld, B., Crippa, S., Wahls, R.A., Morrison, J.H., Mavriplis, D.J., Murayama, M.: Summary of the Fourth AIAA CFD Drag Prediction Workshop. AIAA-Paper 2010-4547 (2010)

    Google Scholar 

  110. Aupoix, B., Spalart, P.R.: Extensions of the Spalart-Allmaras Model to Account for Wall Roughness. Int. J. of Heat and Fluid Flow 24, 454–462 (2003)

    Article  Google Scholar 

  111. Knopp, T., Eisfeld, B., Calvo, J.B.: A New Extension for k-ω Turbulence Models to Account for Wall Roughness. Int. J. of Heat and Fluid Flow 30, 54–65 (2009)

    Article  Google Scholar 

  112. Morkovin, M.V.: Effects of Compressibility on Turbulent Flows. Colloque International CNRS No. 108, Mécanique de la Turbulence, Editions CNRS (1961)

    Google Scholar 

  113. Meier, H.U., Rotta, J.C.: Temperature Distributions in Supersonic Turbulent Boundary Layers. AIAA J. 9, 2149–2156 (1971)

    Article  Google Scholar 

  114. King, R. (ed.): Active Flow Control II. Papers contributed to the Conference “Active Flow Control II”. NNFM, vol. 108. Springer, Heidelberg (2010)

    Google Scholar 

  115. Bushnell, D.M., Hefner, J.M. (eds.): Viscous Drag Reduction in Boundary Layers. Progress in Astronautics and Aeronautics, vol. 123. AIAA, Reston (1990)

    Google Scholar 

  116. Stanewsky, E., Délery, J., Fulker, J., de Matteis, P. (eds.): Drag Reduction by Shock and Boundary Layer Control. Results of the Project EUROSHOCK II, Supported by the European Union, 1996–1999. NNFM, vol. 80. Springer, Heidelberg (2002)

    MATH  Google Scholar 

  117. von Doenhoff, A.E., Braslow, A.L.: The Effect of Distributed Surface Roughness on Laminar Flow. In: Lachmann, V. (ed.) Boundary Layer Control, Its Principles and Application, vol. 2, pp. 657–681. Pergamon Press, Oxford (1961)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ernst Heinrich Hirschel .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Hirschel, E.H., Cousteix, J., Kordulla, W. (2014). Laminar-Turbulent Transition and Turbulence. In: Three-Dimensional Attached Viscous Flow. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41378-0_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41378-0_9

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41377-3

  • Online ISBN: 978-3-642-41378-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics