Skip to main content

A Markov Chain Based Model to Predict HIV/AIDS Epidemiological Trends

  • Conference paper
Model and Data Engineering (MEDI 2013)

Abstract

The emerging and growing use of electronic medical records (EMRs) nowadays gives the possibility of exploiting the huge amount of collected clinical data for epidemiological research purpose, together with the opportunity to address and verify intervention policies and facility management. In this paper we present a Markov chain based model that makes use of real clinical data to simulate epidemiological scenarios for HIV epidemic at a district level. Ad hoc original software has been used, that can be adopted in every similar scenario. This research project is conducted within the Drug Resource Enhancement Against AIDS and Malnutrition (DREAM) Program to fight HIV/AIDS in sub-Saharan Africa. The results of this paper show in a clear and robust fashion how the proposed Markov chain based model can be helpful to predict epidemiological trends and hence to support decision making to face the diffusion of HIV/AIDS and other sexually transmitted diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alsallaq, R.A., Baeten, J.M., Celum, C.L., Hughes, J.P., AbuRaddad, L.J., Barnabas, R.V., Hallett, T.B.: Understanding the potential impact of a combination HIV prevention intervention in a hyper-endemic community. PLoS ONE 8(1) (2013)

    Google Scholar 

  2. Anderson, R.M.: The role of mathematical models in the study of HIV transmission and the epidemiology of AIDS. Journal of Acquired Immune Deficiency Syndromes 1(3), 241–256 (1988)

    Google Scholar 

  3. Chan, K.C., Yip, B., Hogg, R.S., Montaner, J.S., O’Shaughnessy: Survival rates after the initiation of antiretroviral therapy stratified by cd4 cell counts in two cohorts in canada and the united states. AIDS 16(12), 1693–1695 (2002)

    Article  Google Scholar 

  4. Das, M., Lee Chu, P., Santos, G.M., Scheer, S., Vittinghoff, E., McFarland, W., Colfax, G.N.: Decreases in community viral load are accompanied by reductions in new HIV infections in san francisco. PLoS Med. 5(6) (2010)

    Google Scholar 

  5. Donnell, D., Baeten, J.M., Kiarie, J., Thomas, K.K., Stevens, W., Cohen, C.R., McIntyre, J., Lingappa, J.R., Celum, C.: Heterosexual HIV-1 transmission after initiation of antiretrovirval therapy: A prospective cohort analysis. The Lancet 375(9731), 2092–2098 (2010)

    Article  Google Scholar 

  6. Eaton, J.W., Johnson, L.F., Salomon, J.A., Bärnighausen, T., Bendavid, E., Bershteyn, A., Bloom, D.E., Cambiano, V., Fraser, C., Hontelez, J.A.C., Humair, S., Klein, D.J., Long, E.F., Phillips, A.N., Pretorius, C., Stover, J., Wenger, E.A., Williams, B.G., Hallett, T.B.: HIV treatment as prevention: Systematic comparison of mathematical models of the potential impact of antiretroviral therapy on HIV incidence in south africa. PLoS Med. 9(7) (2012)

    Google Scholar 

  7. Granich, R.M., Gilks, C.F., Dye, C., De Cock, K.M., Williams, B.G.: Universal voluntary HIV testing with immediate antiretroviral therapy as a strategy for elimination of HIV transmission: A mathematical model. The Lancet 373(3), 48–57 (2009)

    Article  Google Scholar 

  8. Handcocka, M.S., Holland Jonesb, J.: Likelihood-based inference for stochastic models of sexual network formation. Theoretical Population Biology 65(4), 413–422 (2004)

    Article  Google Scholar 

  9. Hethcote, H.W.: The mathematics of infectious diseases. SIAM Review 42(4), 599–653 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  10. Hollingsworth, T.D., Anderson, R.M., Fraser, C.: HIV-1 transmission, by stage of infection. The Journal of Infectious Diseases 198(5), 687–693 (2008)

    Article  Google Scholar 

  11. Kretzschmar, M., Morris, M.: Measures of concurrency in networks and the spread of infectious diseases. Mathematical Biosciences 133, 165–195 (1996)

    Article  MATH  Google Scholar 

  12. Lutalo, T., Gray, R.H., Wawer, M., Sewankambo, N., Serwadda, D., Laeyendecker, O., Kiwanuka, N., Nalugoda, F., Kigozi, G., Ndyanabo, A., Bwanika, J.B., Reynolds, S.J., Quinn, T., Opendi, P.: Survival of HIV-infected treatment-naive individuals with documented dates of seroconversion in rakai, uganda. AIDS 19, 15–19 (2007)

    Article  Google Scholar 

  13. Nucita, A., Bernava, G.M., Bartolo, M., Di Pane Masi, F., Giglio, P., Peroni, M., Pizzimenti, G., Palombi, L.: A global approach to the management of EMR (electronic medical records) of patients with HIV/AIDS in sub-saharan africa: the experience of dream software. BMC Medical Informatics and Decision Making 9(42) (2009)

    Google Scholar 

  14. World Health Organization. World health statistics 2008 (2008), http://www.who.int/whosis/whostat/2008/en/index.html

  15. Palombi, L., Bernava, G.M., Nucita, A., Giglio, P., Liotta, G., Nielsen-Saines, K., Orlando, S., Mancinelli, S., Buonomo, E., Scarcella, P., Doro Altan, A.M., Guidotti, G., Ceffa, S., Haswell, J., Zimba, I., Magid, N.A., Marazzi, M.C.: Predicting trends in HIV-1 sexual transmission in sub-saharan africa through the drug resource enhancement against aids and malnutrition model: Antiretrovirals for reduction of population infectivity, incidence and prevalence at the district level. Clinical Infectious Diseases (2012)

    Google Scholar 

  16. Palombi, L., Marazzi, M.C., Guidotti, G., Germano, P., Buonomo, E., Scarcella, P., Doro Altan, A.M., Zimba, I., Magnano San Lio, M., De Luca, A.: Incidence and predictors of death, retention, and switch to second-line regimens in antiretroviral-treated patients in sub-saharan african sites with comprehensive monitoring availability. Clinical Infectious Diseases 48(1), 115–122 (2009)

    Article  Google Scholar 

  17. DREAM Programme (2013), http://dream.santegidio.org

  18. Quinn, T.C., Wawer, M.J., Sewankambo, N., Serwadda, D., Li, C., Wabwire-Mangen, F., Meehan, M.O., Lutalo, T., Gray, R.H.: Viral load and heterosexual transmission of human immunodeficiency virus type 1. New England Journal of Medicine 342(13), 921–929 (2000)

    Article  Google Scholar 

  19. Thiébaut, R., May, M.T.: Mathematical modelling of hiv prevention intervention. AIDS 27(3), 475–476 (2013)

    Article  Google Scholar 

  20. Wood, E., Hogg, R.S., Yip, B., Harrigan, P.R., O’Shaughnessy, M.V., Montaner, J.S.: Is there a baseline cd4 cell count that precludes a survival response to modern antiretroviral therapy? AIDS 17(15), 711–720 (2003)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Nucita, A. et al. (2013). A Markov Chain Based Model to Predict HIV/AIDS Epidemiological Trends. In: Cuzzocrea, A., Maabout, S. (eds) Model and Data Engineering. MEDI 2013. Lecture Notes in Computer Science, vol 8216. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41366-7_19

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41366-7_19

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41365-0

  • Online ISBN: 978-3-642-41366-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics