Semantically-Enabled Environmental Data Discovery and Integration: Demonstration Using the Iceland Volcano Use Case

  • Tatiana Tarasova
  • Massimo Argenti
  • Maarten Marx
Conference paper
Part of the Communications in Computer and Information Science book series (CCIS, volume 394)


We present a framework for semantically-enabled data discovery and integration across multiple Earth science disciplines. We leverage well-known vocabularies and ontologies to build semantic models for both metadata and data harmonization. Built upon standard guidelines, our metadata model extends them with richer semantics. To harmonize data, we implement an observation-centric data model based on the RDF Data Cube vocabulary. Previous works define the Data Cube extensions which are relevant to certain Earth science disciplines. To provide a generic and domain independent solution, we propose an upper level vocabulary that allows us to express domain specific information at a higher level of abstraction.

From a human viewpoint we provide an interactive Web based user interface for data discovery and integration across multiple research infrastructures. We will demonstrate the system on a use case of the Iceland Volcano’s eruption on April 10, 2010.


Earth Science data integration ontology RDF Data Cube vocabulary 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Ziegler, P., Dittrich, K.R.: Three Decades of Data Integration - All Problems Solved? In: 18th IFIP World Computer Congress, WCC 2004 (2004)Google Scholar
  2. 2.
    McGuinness, D., Fox, P., Cinquini, L., West, P., Garcia, J., Benedict, J., Middleton, D.: The virtual solar-terrestrial observatory: A deployed semantic web application case study for scientific research. In: Proceedings of the 19th National Conference on Innovative Applications of Artificial Intelligence (2007)Google Scholar
  3. 3.
    Rezgui, A., Malik, Z., Sihna, A.K.: DIA Engine: Semantic Discovery, Integration, and Analysis of Earth Science Data. In: Proceedings of the Geoinformatics Conference (2007)Google Scholar
  4. 4.
    Sinha, A.K., Malik, Z., Rezgui, A., Dalton, A.: Developing the ontologic framework and tools for the discovery and integration of Earth science data. Cyberinfrastructure Research at Virginia Tech (2006)Google Scholar
  5. 5.
    Raskin, R., Pan, M.: Semantic Web for Earth and Environmental Terminology (SWEET). In: Proc. of the Workshop on Semantic Web Technologies for Searching and Retrieving Scientific Data (2003)Google Scholar
  6. 6.
    Bizer, C., Heath, T., Idehen, K., Berners-Lee, T.: Linked Data: Evolving the Web into a Global Data Space, vol. 1. ACM Press (2008),
  7. 7.
    Rüther, M., Fock, J., Hubener, J.: Linked Environmental Data. In: 24th International Conference on Informatics for Environmental Protection (2010)Google Scholar
  8. 8.
    Pundt, H., Bishr, Y.: Domain ontologies for data sharing - an example from environmental monitoring using field GIS. Journal on Computers & Geoscience 1(28), 95–102 (2002)CrossRefGoogle Scholar
  9. 9.
    Rüther, M., Bandholtz, T., Schulte-Coerne, T.: Linked Environment Data: SCOVO-fying the Environment Specimen Bank. In: ESWC (2009)Google Scholar
  10. 10.
    Geographic Information: Observations and Measurements. OGC Abstract Specification,
  11. 11.
    State of progress in the development of guidelines to express elements of the INSPIRE metadata implementing rules using ISO 15836 (Dublin Core). European Commission (2008),
  12. 12.

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Tatiana Tarasova
    • 1
  • Massimo Argenti
    • 2
  • Maarten Marx
    • 1
  1. 1.ISLAUniversity of AmsterdamAmsterdamNetherlands
  2. 2.ESA, European Space AgencyFrascatiItaly

Personalised recommendations