Advertisement

Ontology-Based Content Trust Support of Expert Information Resources in Quantitative Spectroscopy

  • Alexander Fazliev
  • Alexey Privezentsev
  • Dmitry Tsarkov
  • Jonathan Tennyson
Part of the Communications in Computer and Information Science book series (CCIS, volume 394)

Abstract

An approach to assessing the content trust of information resources based on a publishing criterion has been developed and applied to several tens of spectroscopic expert datasets. The results represented as an OWL-ontology are shown to be accessible to programmable agents. The assessments enable the amount of measured and calculated trusted and distrusted data for spectroscopic quantities and ranges of their change in expert datasets to be determined. Building knowledge bases of this kind at virtual data centers intended for data intensive science will provide realization of an automatic selection of spectroscopic information resources exhibiting a high degree of trust.

Keywords

Trust OWL Ontology Quantitative Spectroscopy 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Akhlyostin, A., Kozodoev, A., Lavrentiev, N., Privezentsev, A., Fazliev, A.: Computed knowledge base for description of information resourses of molecular spectroscopy 4. Software. Russian Digital Library Journal 15(3) (2012)Google Scholar
  2. 2.
    Artz, D., Gil, Y.: A survey of trust in computer science and the Semantic Web. Journal of Web Semantics 5(2), 58–71 (2007)CrossRefGoogle Scholar
  3. 3.
    Bizer, C., Oldakowski, R.: Using context- and content-based trust policies on the semantic web. In: Proceedings of the 13th International World Wide Web Conference on Alternate Track Papers & Posters, WWW Alt. 2004, pp. 228–229. ACM, New York (2004)CrossRefGoogle Scholar
  4. 4.
    Cami, J., van Malderen, R., Markwick, A.J.: SpectraFactory.net: A Database of Molecular Model Spectra. The Astrophysical Journal Supplement 187, 409–415 (2010)CrossRefGoogle Scholar
  5. 5.
    Chance, K., Kurucz, R.L.: An improved high-resolution solar reference spectrum for earth’s atmosphere measurements in the ultraviolet, visible, and near infrared. Journal of Quantitative Spectroscopy and Radiative Transfer 111, 1289–1295 (2010)CrossRefGoogle Scholar
  6. 6.
    Ciolek, T.M.: The six quests for the electronic grail: Current approaches to information quality in www resources. Review Informatique et Statistique dans les Sciences Humaines (RISSH) 1(4), 45–71 (1996)Google Scholar
  7. 7.
    Dubernet, M., Boudon, V., Culhane, J., Dimitrijevic, M., Fazliev, A., Joblin, C., Kupka, F., Leto, G., Sidaner, P.L., Loboda, P., et al.: Virtual atomic and molecular data centre. Journal of Quantitative Spectroscopy and Radiative Transfer 111(15), 2151–2159 (2010)CrossRefGoogle Scholar
  8. 8.
    Fazliev, A., Privezentsev, A., Tsarkov, D.: Computed knowledge base for quantitative spectroscopy. In: Proc. of Knowledge Engineering and Semantic Web Conference (KESW 2012), Saint-Petersburg, Russia (2012)Google Scholar
  9. 9.
    Gil, Y., Artz, D.: Towards content trust of web resources. Journal of Web Semantics 5(4), 227–239 (2007)CrossRefGoogle Scholar
  10. 10.
    Jacquinet-Husson, N., Crepeau, L., Armante, R., Boutammine, C., Chédin, A., Scott, N., Crevoisier, C., Capelle, V., Boone, C., et al.: The 2009 edition of the GEISA spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer 112(15), 2395–2445 (2011)CrossRefGoogle Scholar
  11. 11.
    Jacquinet-Husson, N., Scott, N., Chédin, A., Crépeau, L., Armante, R., Capelle, V., Orphal, J., Coustenis, A., Boonne, C., Poulet-Crovisier, N., et al.: The GEISA spectroscopic database: Current and future archive for Earth and planetary atmosphere studies. Journal of Quantitative Spectroscopy and Radiative Transfer 109(6), 1043–1059 (2008)CrossRefGoogle Scholar
  12. 12.
    Jacquinet-Husson, N., Scott, N., Chédin, A., Garceran, K., Armante, R., Chursin, A., Barbe, A., Birk, M., Brown, L., Camy-Peyret, C., et al.: The 2003 edition of the GEISA/IASI spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer 95(4), 429–467 (2005)CrossRefGoogle Scholar
  13. 13.
    Kozodoev, A., Fazliev, A.: Information system for molecular spectroscopy. 2. Array operations for transformation of data on spectral line parameters. Journal of Atmospheric and Oceanic Optics 18(9), 680–684 (2005)Google Scholar
  14. 14.
    Lavrentiev, N.A., Makogon, M.M., Fazliev, A.Z.: Comparison of the HITRAN and GEISA spectral databases taking into account the restriction on publication of spectral data. Journal of Atmospheric and Oceanic Optics 24(5), 436–451 (2011)CrossRefGoogle Scholar
  15. 15.
    O’Hara, K., Alani, H., Kalfoglou, Y., Shadbolt, N.: Trust strategies for the semantic web. In: Golbeck, J., Bonatti, P.A., Nejdl, W., Olmedilla, D., Winslett, M. (eds.) ISWC Workshop on Trust, Security, and Reputation on the Semantic Web. CEUR Workshop Proceedings, vol. 127, CEUR-WS.org (2004)Google Scholar
  16. 16.
    Polovtseva, E.R., Lavrentiev, N.A., Voronina, S.S., Naumenko, O.V., Fazliev, A.Z.: Information system for molecular spectroscopy. 5. Ro-vibrational transitions and energy levels of the hydrogen sulfide molecule. Journal of Atmospheric and Oceanic Optics 25(2), 157–165 (2012)CrossRefGoogle Scholar
  17. 17.
    Rothman, L., Gordon, I., Barbe, A., Benner, D., Bernath, P., Birk, M., Boudon, V., Brown, L., Campargue, A., Champion, J., et al.: The HITRAN 2008 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer 110(9-10), 533–572 (2009)CrossRefGoogle Scholar
  18. 18.
    Rothman, L., Gordon, I., Barber, R., Dothe, H., Gamache, R., Goldman, A., Perevalov, V., Tashkun, S., Tennyson, J.: HITEMP, the high-temperature molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer 111(15), 2139–2150 (2010)CrossRefGoogle Scholar
  19. 19.
    Rothman, L.S., Jacquemart, D., Barbe, A., Benner, D.C., Birk, M., Brown, L., Carleer, M.R., Chackerian Jr., C., Chance, K., Coudert, L.H., et al.: The HITRAN 2004 molecular spectroscopic database. Journal of Quantitative Spectroscopy and Radiative Transfer 96(2), 139–204 (2005)CrossRefGoogle Scholar
  20. 20.
    de Roure, D., Jennings, N.R., Shadbolt, N.: The Semantic Grid: A future e-Science infrastructure. In: Berman, F., Fox, G., Hey, A. (eds.) Grid Computing – Making the Global Infrastructure a Reality, pp. 437–470. John Wiley and Sons Ltd. (2003)Google Scholar
  21. 21.
    Sabater, J., Sierra, C.: Review on computational trust and reputation models. Journal of Artificial Intelligence Reviews 24(1), 33–60 (2005)CrossRefzbMATHGoogle Scholar
  22. 22.
    Tashkun, S., Velichko, T., Mikhailenko, S.: Critical evaluation of measured pure-rotation and rotation-vibration line positions and an experimental dataset of energy levels of 12C16O in X 1Σ +  state. Journal of Quantitative Spectroscopy and Radiative Transfer 111(9), 1106–1116 (2010)CrossRefGoogle Scholar
  23. 23.
    Tennyson, J., Bernath, P., Brown, L., Campargue, A., Carleer, M., Császár, A., Gamache, R., Hodges, J., Jenouvrier, A., Naumenko, O., et al.: IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part I. Energy levels and transition wavenumbers for H2 17O and H2 18O. Journal of Quantitative Spectroscopy and Radiative Transfer 110(9-10), 573–596 (2009)CrossRefGoogle Scholar
  24. 24.
    Tennyson, J., Bernath, P., Brown, L., Campargue, A., Császár, A., Daumont, L., Gamache, R., Hodges, J., Naumenko, O., Polyansky, O., et al.: IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part II: Energy levels and transition wavenumbers for HD16O, HD17O, and HD18O. Journal of Quantitative Spectroscopy and Radiative Transfer 111(15), 2160–2184 (2010)CrossRefGoogle Scholar
  25. 25.
    Tennyson, J., Bernath, P., Brown, L., Campargue, A., Császár, A., Daumont, L., Gamache, R., Hodges, J., Naumenko, O., Polyansky, O., et al.: IUPAC critical evaluation of the rotational-vibrational spectra of water vapor. Part III: Energy levels and transition wavenumbers for H2 16O. Journal of Quantitative Spectroscopy and Radiative Transfer 117, 29–58 (2013)CrossRefGoogle Scholar
  26. 26.
    Toth, R., Brown, L., Miller, C., Malathy, D.V., Benner, D.C.: Spectroscopic database of CO2 line parameters: 4300–7000 cm− 1. Journal of Quantitative Spectroscopy and Radiative Transfer 109(6), 906–921 (2008)CrossRefGoogle Scholar
  27. 27.
    Ulenikov, O., Liu, A.W., Bekhtereva, E., Gromova, O., Hao, L.Y., Hu, S.M.: High-resolution Fourier transform spectrum of H2S in the region of the second hexade. Journal of Molecular Spectroscopy 234(2), 270–278 (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Alexander Fazliev
    • 1
  • Alexey Privezentsev
    • 1
  • Dmitry Tsarkov
    • 2
  • Jonathan Tennyson
    • 3
  1. 1.V.E.Zuev Institute of Atmospheric Optics SB RASTomskRussia
  2. 2.School of Computer ScienceUniversity of ManchesterManchesterUK
  3. 3.Department of Physics and AstronomyUniversity College LondonLondonUK

Personalised recommendations