Skip to main content

Laser-Based Biomimetic Tissue Engineering

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Tissue Engineering is defined as the technology aiming to apply the principles of engineering and life sciences towards the development of biological substitutes that restore, maintain, or improve tissue function or a whole organ. Its eventual goal is the creation of 3D artificial cell culture scaffolds that mimic the natural extracellular environment features sufficiently, so that cells function in the artificial medium as they would in vivo. Cells in tissue are surrounded by a dynamic cell type-dependent extracellular matrix that provides instructive cues at both the micro- and the nanoscale needed to maintain cell phenotype and behaviour. Cells are thus, inherently responsive to their environment, receptive to micro- and nanoscale features and patterns of chemistry and topography. Lasers are increasingly proving to be promising tools for the controlled and reproducible structuring of biomaterials at micro- and nanoscales. This chapter reviews current approaches for laser based fabrication of biomimetic tissue engineering scaffolds. These include laser processing of natural biomaterials synthesized to achieve certain compositions or properties similar to those of the extracellular matrix as well as novel laser fabrication technologies to achieve structural features on artificial materials mimicking the extracellular matrix morphology on various levels. The chapter concludes with the wealth of arising possibilities, demonstrating the excitement and significance of the laser based biomimetic materials processing for tissue engineering and regeneration.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Skalak R, Fox C (1988) Tissue Engineering. In: Proceedings for a workshop held at granlibakken, Lake Tahoe, CA, February 26–29 New York, Alan Liss

    Google Scholar 

  2. Stevens MM, George JH (2005) Exploring and engineering the cell surface interface. Science 310(5751):1135–1138

    Article  ADS  Google Scholar 

  3. Yu LMY, Leipzig ND, Shoichet MS (2008) Promoting neuron adhesion and growth. Mater Today 11(5):36–43

    Article  Google Scholar 

  4. Seidlits SK, Lee JY, Schmidt CE (2008) Nanostructured scaffolds for neural applications. Nanomedicine-Uk 3(2):183–199

    Article  Google Scholar 

  5. Hollister SJ (2005) Porous scaffold design for tissue Engineering. Nat Mater 4(7):518–524. doi:10.1038/nmat1421PII:nmat1421

    Google Scholar 

  6. Cretel E, Pierres A, Benoliel AM, Bongrand P (2008) How cells feel their environment: a focus on early dynamic events. Cell Mol Bioeng 1(1):5–14

    Article  Google Scholar 

  7. Khang D, Lu J, Yao C, Haberstroh KM, Webster TJ (2008) The role of nanometer and sub-micron surface features on vascular and bone cell adhesion on titanium. Biomaterials 29(8):970–983

    Article  Google Scholar 

  8. Gaspard S, Oujja M, Abrusci C, Catalina F, Lazare S, Desvergne JP, Castillejo M (2008) Laser induced foaming and chemical modifications of gelatine films. J Photoch Photobio A 193(2–3):187–192

    Article  Google Scholar 

  9. Engelmayr GC, Cheng MY, Bettinger CJ, Borenstein JT, Langer R, Freed LE (2008) Accordion-like honeycombs for tissue engineering of cardiac anisotropy. Nat Mater 7(12):1003–1010

    Article  ADS  Google Scholar 

  10. Chen GP, Ushida T, Tateishi T (2000) Hybrid biomaterials for tissue engineering: a preparative method for PLA or PLGA-collagen hybrid sponges. Adv Mater 12(6):455

    Google Scholar 

  11. Bruggeman JP, Bettinger CJ, Nijst CLE, Kohane DS, Langer R (2008) Biodegradable xylitol-based polymers. Adv Mater 20(10):1922

    Google Scholar 

  12. Wang YD, Ameer GA, Sheppard BJ, Langer R (2002) A tough biodegradable elastomer. Nat Biotechnol 20(6):602–606

    Article  Google Scholar 

  13. Bettinger CJ (2009) Synthesis and microfabrication of biomaterials for soft-tissue engineering. Pure Appl Chem 81(12):2183–2201

    Article  Google Scholar 

  14. Ifkovits JL, Burdick JA (2007) Review: photopolymerizable and degradable biomaterials for tissue engineering applications. Tissue Eng 13(10):2369–2385

    Article  Google Scholar 

  15. Li HY, Du RL, Chang J (2005) Fabrication, characterization, and in vitro degradation of composite scaffolds based on PHBV and bioactive glass. J Biomater Appl 20(2):137–155

    Article  Google Scholar 

  16. Martin AI, Salinas AJ, Vallet-Regi M (2005) Bioactive and degradable organic-inorganic hybrids. J Eur Ceram Soc 25(16):3533–3538

    Article  Google Scholar 

  17. Sepulveda P, Jones JR, Hench LL (2002) Bioactive sol-gel foams for tissue repair. J Biomed Mater Res 59(2):340–348

    Article  Google Scholar 

  18. Martin RA, Yue S, Hanna JV, Lee PD, Newport RJ, Smith ME, Jones JR (2012) Characterizing the hierarchical structures of bioactive sol-gel silicate glass and hybrid scaffolds for bone regeneration. Philos T R Soc A 370(1963):1422–1443

    Article  ADS  Google Scholar 

  19. Valerio P, Guimaraes MHR, Pereira MM, Leite MF, Goes AM (2005) Primary osteoblast cell response to sol-gel derived bioactive glass foams. J Mater Sci-Mater M 16(9):851–856

    Article  Google Scholar 

  20. Gough JE, Jones JR, Hench LL (2004) Nodule formation and mineralisation of human primary osteoblasts cultured on a porous bioactive glass scaffold. Biomaterials 25(11):2039–2046

    Article  Google Scholar 

  21. Mano JF, Vaz CM, Mendes SC, Reis RL, Cunha AM (1999) Dynamic mechanical properties of hydroxyapatite-reinforced and porous starch-based degradable biomaterials. J Mater Sci-Mater M 10(12):857–862

    Article  Google Scholar 

  22. Yang SF, Leong KF, Du ZH, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part 1. Traditional factors. Tissue Eng 7(6):679–689

    Article  Google Scholar 

  23. Lee J, Cuddihy MJ, Kotov NA (2008) Three-dimensional cell culture matrices: State of the art. Tissue Eng Pt B-Rev 14(1):61–86

    Article  Google Scholar 

  24. Kurella A, Dahotre NB (2005) Review paper: surface modification for bioimplants: the role of laser surface engineering. J Biomater Appl 20(1):5–50. doi:10.1177/0885328205052974

    Google Scholar 

  25. Stratakis E, Ranella A, Fotakis C (2011) Biomimetic micro/nanostructured functional surfaces for microfluidic and tissue engineering applications. Biomicrofluidics 5(1):013411

    Google Scholar 

  26. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362

    Google Scholar 

  27. Peltola SM, Melchels FPW, Grijpma DW, Kellomaki M (2008) A review of rapid prototyping techniques for tissue engineering purposes. Ann Med 40(4):268–280

    Article  Google Scholar 

  28. Sachlos E, Czernuszka JT (2003) Making tissue Engineering scaffolds work. Review: the application of solid freeform fabrication technology to the production of tissue Engineering scaffolds. Eur Cell Mater 5:29–39; discussion 39–40. doi:vol005a03

    Google Scholar 

  29. Yeong WY, Chua CK, Leong KF, Chandrasekaran M (2004) Rapid prototyping in tissue engineering: challenges and potential. Trends Biotechnol 22(12):643–652

    Article  Google Scholar 

  30. Schmidt M, Pohle D, Rechtenwald T (2007) Selective laser sintering of PEEK. Cirp Ann-Manuf Techn 56(1):205–208

    Article  Google Scholar 

  31. Rimell JT, Marquis PM (2000) Selective laser sintering of ultra high molecular weight polyethylene for clinical applications. J Biomed Mater Res 53(4):414–420

    Article  Google Scholar 

  32. Tan KH, Chua CK, Leong KF, Cheah CM, Cheang P, Abu Bakar MS, Cha SW (2003) Scaffold development using selective laser sintering of polyetheretherketone-hydroxyapatite biocomposite blends. Biomaterials 24(18):3115–3123

    Article  Google Scholar 

  33. Williams JM, Adewunmi A, Schek RM, Flanagan CL, Krebsbach PH, Feinberg SE, Hollister SJ, Das S (2005) Bone tissue engineering using polycaprolactone scaffolds fabricated via selective laser sintering. Biomaterials 26(23):4817–4827

    Article  Google Scholar 

  34. Kanczler JM, Mirmalek-Sani SH, Hanley NA, Ivanov AL, Barry JJA, Upton C, Shakesheff KM, Howdle SM, Antonov EN, Bagratashvili VN, Popov VK, Oreffo ROC (2009) Biocompatibility and osteogenic potential of human fetal femur-derived cells on surface selective laser sintered scaffolds. Acta Biomater 5(6):2063–2071

    Article  Google Scholar 

  35. Zhou WY, Lee SH, Wang M, Cheung WL, Ip WY (2008) Selective laser sintering of porous tissue engineering scaffolds from poly(L)/carbonated hydroxyapatite nanocomposite microspheres. J Mater Sci-Mater M 19(7):2535–2540

    Article  Google Scholar 

  36. Wiria FE, Leong KF, Chua CK, Liu Y (2007) Poly-epsilon-caprolactone/hydroxyapatite for tissue engineering scaffold fabrication via selective laser sintering. Acta Biomater 3(1):1–12

    Article  Google Scholar 

  37. Simpson RL, Wiria FE, Amis AA, Chua CK, Leong KF, Hansen UN, Chandraselkaran M, Lee MW (2008) Development of a 95/5 poly(L-lactide-co-glycolide)/hydroxylapatite and beta-tricalcium phosphate scaffold as bone replacement material via selective laser sintering. J Biomed Mater Res B 84B(1):17–25

    Article  Google Scholar 

  38. Duan B, Wang M, Zhou WY, Cheung WL, Li ZY, Lu WW (2010) Three-dimensional nanocomposite scaffolds fabricated via selective laser sintering for bone tissue engineering. Acta Biomater 6(12):4495–4505

    Article  Google Scholar 

  39. Levy RA, Chu TMG, Halloran JW, Feinberg SE, Hollister S (1997) CT-generated porous hydroxyapatite orbital floor prosthesis as a prototype bioimplant. Am J Neuroradiol 18(8):1522–1525

    Google Scholar 

  40. Griffith ML, Halloran JW (1996) Freeform fabrication of ceramics via stereolithography. J Am Ceram Soc 79(10):2601–2608

    Article  Google Scholar 

  41. Matsuda T, Mizutani M (2002) Liquid acrylate-endcapped biodegradable poly(epsilon-caprolactone-co-trimethylene carbonate). II. Computer-aided stereolithographic microarchitectural surface photoconstructs. J Biomed Mater Res 62(3):395–403

    Article  Google Scholar 

  42. Cooke MN, Fisher JP, Dean D, Rimnac C, Mikos AG (2003) Use of stereolithography to manufacture critical-sized 3D biodegradable scaffolds for bone ingrowth. J Biomed Mater Res B 64B(2):65–69

    Article  Google Scholar 

  43. Dhariwala B, Hunt E, Boland T (2004) Rapid prototyping of tissue-engineering constructs, using photopolymerizable hydrogels and stereolithography. Tissue Eng 10(9–10):1316–1322

    Google Scholar 

  44. Melchels FPW, Feijen J, Grijpma DW (2009) A poly(D, L-lactide) resin for the preparation of tissue engineering scaffolds by stereolithography. Biomaterials 30(23–24):3801–3809

    Article  Google Scholar 

  45. Lee JW, Nguyen TA, Kang KS, Seol YJ, Cho DW (2008) Development of a growth factor-embedded scaffold with controllable pore size and distribution using micro-stereolithography. Tissue Eng Pt A 14(5):835–835

    Google Scholar 

  46. Arcaute K, Mann BK, Wicker RB (2006) Stereolithography of three-dimensional bioactive poly(ethylene glycol) constructs with encapsulated cells. Ann Biomed Eng 34(9):1429–1441

    Article  Google Scholar 

  47. Cumpston BH, Ananthavel SP, Barlow S, Dyer DL, Ehrlich JE, Erskine LL, Heikal AA, Kuebler SM, Lee IYS, McCord-Maughon D, Qin JQ, Rockel H, Rumi M, Wu XL, Marder SR, Perry JW (1999) Two-photon polymerization initiators for three-dimensional optical data storage and microfabrication. Nature 398(6722):51–54

    Article  ADS  Google Scholar 

  48. Farsari M, Chichkov BN (2009) Two-photon fabrication. Nat Photonics 3(8):450–452

    Article  ADS  Google Scholar 

  49. Almany L, Seliktar D (2005) Biosynthetic hydrogel scaffolds made from fibrinogen and polyethylene glycol for 3D cell cultures. Biomaterials 26(15):2467–2477

    Article  Google Scholar 

  50. Hsieh TM, Ng CWB, Narayanan K, Wan ACA, Ying JY (2010) Three-dimensional microstructured tissue scaffolds fabricated by two-photon laser scanning photolithography. Biomaterials 31(30):7648–7652

    Article  Google Scholar 

  51. Ovsianikov A, Schlie S, Ngezahayo A, Haverich A, Chichkov BN (2007) Two-photon polymerization technique for microfabrication of CAD-designed 3D scaffolds from commercially available photosensitive materials. J Tissue Eng Regen M 1(6):443–449

    Article  Google Scholar 

  52. Livage J, Sanchez C (1992) sol-gel chemistry. J Non-Cryst Solids 145(1–3):11–19

    Article  ADS  Google Scholar 

  53. Ovsianikov A, Viertl J, Chichkov B, Oubaha M, MacCraith B, Sakellari I, Giakoumaki A, Gray D, Vamvakaki M, Farsari M, Fotakis C (2008) Ultra-low shrinkage hybrid photosensitive material for two-photon polymerization microfabrication. Acs Nano 2(11):2257–2262

    Article  Google Scholar 

  54. Sakellari I, Gaidukeviciute A, Giakoumaki A, Gray D, Fotakis C, Farsari M, Vamvakaki M, Reinhardt C, Ovsianikov A, Chichkov BN (2010) Two-photon polymerization of titanium-containing sol-gel composites for three-dimensional structure fabrication. Appl Phys a-Mater 100(2):359–364

    Article  ADS  Google Scholar 

  55. Psycharakis S, Tosca A, Melissinaki V, Giakoumaki A, Ranella A (2011) Tailor-made three-dimensional hybrid scaffolds for cell cultures. Biomed Mater 6(4):045008

    Google Scholar 

  56. Claeyssens F, Hasan EA, Gaidukeviciute A, Achilleos DS, Ranella A, Reinhardt C, Ovsianikov A, Xiao S, Fotakis C, Vamvakaki M, Chichkov BN, Farsari M (2009) Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir 25(5):3219–3223

    Google Scholar 

  57. Mizutani M, Matsuda T (2002) Liquid photocurable biodegradable copolymers: In vivo degradation of photocured poly(epsilon-caprolactone-co-trimethylene carbonate). J Biomed Mater Res 61(1):53–60

    Article  Google Scholar 

  58. Mizutani M, Matsuda T (2002) Photocurable liquid biodegradable copolymers: in vitro hydrolytic degradation behaviors of photocured films of coumarin-endcapped poly(epsilon-caprolactone-co-trimethylene carbonate). Biomacromolecules 3(2):249–255

    Article  Google Scholar 

  59. Melissinaki V, Gill AA, Ortega I, Vamvakaki M, Ranella A, Haycock JW, Fotakis C, Farsari M, Claeyssens F (2011) Direct laser writing of 3D scaffolds for neural tissue engineering applications. Biofabrication 3(4):045005

    Google Scholar 

  60. Ke K, Hasselbrink EF, Hunt AJ (2005) Rapidly prototyped three-dimensional nanofluidic channel networks in glass substrates. Anal Chem 77(16):5083–5088

    Google Scholar 

  61. Zorba V, Stratakis E, Barberoglou M, Spanakis E, Tzanetakis P, Anastasiadis SH, Fotakis C (2008) Biomimetic artificial surfaces quantitatively reproduce the water repellency of a lotus leaf. Adv Mater 20(21):4049

    Google Scholar 

  62. Ranella A, Barberoglou M, Bakogianni S, Fotakis C, Stratakis E (2010) Tuning cell adhesion by controlling the roughness and wettability of 3D micro/nano silicon structures. Acta Biomater 6(7):2711–2720

    Article  Google Scholar 

  63. Doraiswamy A, Patz T, Narayan RJ, Dinescu M, Modi R, Auyeung RCY, Chrisey DB (2006) Two-dimensional differential adherence of neuroblasts in laser micromachined CAD/CAM agarose channels. Appl Surf Sci 252(13):4748–4753

    Article  ADS  Google Scholar 

  64. Duncan AC, Rouais F, Lazare S, Bordenave L, Baquey C (2007) Effect of laser modified surface microtopochemistry on endothelial cell growth. Colloid Surf B 54(2):150–159

    Article  Google Scholar 

  65. Miller PR, Aggarwal R, Doraiswamy A, Lin YJ, Lee YS, Narayan RJ (2009) Laser micromachining for biomedical applications. Jom-Us 61(9):35–40

    Article  Google Scholar 

  66. Patz TM, Doraiswamy A, Narayan RJ, Modi R, Chrisey DB (2005) Two-dimensional differential adherence and alignment of C2C12 myoblasts. Mat Sci Eng B-Solid 123(3):242–247

    Article  Google Scholar 

  67. Choi HW, Johnson JK, Nam J, Farson DF, Lannutti J (2007) Structuring electrospun polycaprolactone nanofiber tissue scaffolds by femtosecond laser ablation. J Laser Appl 19(4):225–231

    Article  Google Scholar 

  68. Papadopoulou EL, Samara A, Barberoglou M, Manousaki A, Pagakis SN, Anastasiadou E, Fotakis C, Stratakis E (2010) Silicon scaffolds promoting three-dimensional neuronal Web of cytoplasmic processes. Tissue Eng Part C-Me 16(3):497–502

    Article  Google Scholar 

  69. Masoumi KL, Johnson JT, Zugates GC, Engelmayr GC (2011) IEEE 37th annual northeast bioengineering conference (NEBEC), 1–2, April 2011

    Google Scholar 

  70. Wüst S, Müller R, Hofmann S (2011) Controlled positioning of cells in biomaterials-approaches towards 3D tissue printing. J Funct Biomater 2(3):119–154

    Article  Google Scholar 

  71. Guillotin B, Souquet A, Catros S, Duocastella M, Pippenger B, Bellance S, Bareille R, Remy M, Bordenave L, Amedee J, Guillemot F (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31(28):7250–7256

    Article  Google Scholar 

  72. Mironov V, Boland T, Trusk T, Forgacs G, Markwald RR (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21(4):157–161

    Article  Google Scholar 

  73. Schiele NR, Corr DT, Huang Y, Raof NA, Xie YB, Chrisey DB (2010) Laser-based direct-write techniques for cell printing. Biofabrication 2(3):032001

    Google Scholar 

  74. Ovsianikov A, Gruene M, Pflaum M, Koch L, Maiorana F, Wilhelmi M, Haverich A, Chichkov B (2010) Laser printing of cells into 3D scaffolds. Biofabrication 2(1):014104

    Google Scholar 

  75. Gittard SD, Narayan R (2010) Laser direct writing of micro- and nano-scale medical devices. Expert Rev Med Devic 7(3):343–356

    Google Scholar 

  76. Chu TMG, Halloran JW, Hollister SJ, Feinberg SE (2001) Hydroxyapatite implants with designed internal architecture. J Mater Sci-Mater M 12(6):471–478

    Google Scholar 

  77. Koufaki N, Ranella A, Aifantis KE, Barberoglou M, Psycharakis S, Fotakis C, Stratakis E (2011) Controlling cell adhesion via replication of laser micro/nano-textured surfaces on polymers. Biofabrication 3(4):045004

    Google Scholar 

  78. Willerth SM, Sakiyama-Elbert SE (2008) Combining stem cells and biomaterial scaffolds for constructing tissues and cell delivery. doi:NBK27050[bookaccession]

  79. Aguilar CA, Lu Y, Mao S, Chen SC (2005) Direct micro-patterning of biodegradable polymers using ultraviolet and femtosecond lasers. Biomaterials 26(36):7642–7649

    Google Scholar 

  80. Narayan RJ, Jin CM, Patz T, Doraiswamy A, Modi R, Chrisey DB, Su YY, Lin SJ, Ovsianikov A, Chichkov B (2005) Laser processing of advanced biomaterials. Adv Mater Process 163(4):39–42

    Google Scholar 

  81. Vogel A, Noack J, Huttman G, Paltauf G (2005) Mechanisms of femtosecond laser nanosurgery of cells and tissues. Appl Phys B-Lasers O 81(8):1015–1047

    Article  ADS  Google Scholar 

  82. Ritschdorff ET, Shear JB (2010) Multiphoton lithography using a high-repetition rate microchip laser. Anal Chem 82(20):8733–8737

    Article  Google Scholar 

  83. Seidlits SK, Schmidt CE, Shear JB (2009) High-resolution patterning of hydrogels in three dimensions using direct-write photofabrication for cell guidance. Adv Funct Mater 19(22):3543–3551

    Article  Google Scholar 

  84. Turunen S, Kapyla E, Terzaki K, Viitanen J, Fotakis C, Kellomaki M, Farsari M (2011) Pico- and femtosecond laser-induced crosslinking of protein microstructures: evaluation of processability and bioactivity. Biofabrication 3(4):045002

    Google Scholar 

  85. Ovsianikov A, Deiwick A, Van Vlierberghe S, Dubruel P, Moller L, Drager G, Chichkov B (2011) Laser fabrication of three-dimensional CAD scaffolds from photosensitive gelatin for applications in tissue Engineering. Biomacromolecules 12(4):851–858

    Google Scholar 

  86. Ovsianikov A, Deiwick A, Van Vlierberghe S, Pflaum M, Wilhelmi M, Dubruel P, Chichkov B (2011) Laser fabrication of 3D gelatin scaffolds for the generation of bioartificial tissues. Materials 4(1):288–299

    Article  ADS  Google Scholar 

  87. Lazare S, Tokarev V, Sionkowska A, Wisniewski M (2005) Surface foaming of collagen, chitosan and other biopolymer films by KrF excimer laser ablation in the photomechanical regime. Appl Phys a-Mater 81(3):465–470

    Article  ADS  Google Scholar 

  88. Wisniewski M, Sionkowska A, Kaczmarek H, Lazare S, Tokarev V (2007) Influence of laser irradiation on the thin collagen films. part I. mechanism of micro-foam structure formation and collagen surface ablation. Polimery-W 52(4):259–267

    Google Scholar 

  89. Gaspard S, Oujja M, de Nalda R, Abrusci C, Catalina F, Banares L, Lazare S, Castillejo M (2007) Nanofoaming in the surface of biopolymers by femtosecond pulsed laser irradiation. Appl Surf Sci 254(4):1179–1184

    Article  ADS  Google Scholar 

  90. Sionkowska A, Kaczmarek H, Wisniewski M, Skopinska J, Lazare S, Tokarev V (2006) The influence of UV irradiation on the surface of chitosan films. Surf Sci 600(18):3775–3779

    Article  ADS  Google Scholar 

  91. Gaspard S, Oujja A, de Nalda R, Abrusci C, Catalina F, Banares L, Castillejo M (2007) Submicron foaming in gelatine by nanosecond and femtosecond pulsed laser irradiation. Appl Surf Sci 253(15):6420–6424

    Article  ADS  Google Scholar 

  92. Gaspard S, Oujja M, de Nalda R, Castillejo M, Banares L, Lazare S, Bonneau R (2008) Nanofoaming dynamics in biopolymers by femtosecond laser irradiation. Appl Phys a-Mater 93(1):209–213

    Article  ADS  Google Scholar 

  93. Lazare S, Bonneau R, Gaspard S, Oujja M, De Nalda R, Castillejo M, Sionkowska A (2009) Modeling the dynamics of one laser pulse surface nanofoaming of biopolymers. Appl Phys a-Mater 94(4):719–729

    Article  ADS  Google Scholar 

  94. Wisniewski M, Sionkowska A, Kaczmarek H, Skopinska J, Lazare S, Tokarev V (2006) The influence of KrF excimer laser irradiation on the surface of collagen and collagen/PVP films. Int J Photoenergy

    Google Scholar 

  95. Klini A, Loukakos PA, Gray D, Manousaki A, Fotakis C (2008) Laser induced forward transfer of metals by temporally shaped femtosecond laser pulses. Opt Expr 16(15):11300–11309. doi:167754[pii]

    Google Scholar 

  96. Tzortzakis S, Papazoglou DG, Zergioti I (2006) Long-range filamentary propagation of subpicosecond ultraviolet laser pulses in fused silica. Opt Lett 31(6):796–798

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Emmanuel Stratakis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Stratakis, E., Ranella, A., Fotakis, C. (2013). Laser-Based Biomimetic Tissue Engineering. In: Schmidt, V., Belegratis, M. (eds) Laser Technology in Biomimetics. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41341-4_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41341-4_9

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41340-7

  • Online ISBN: 978-3-642-41341-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics