Skip to main content

Laser Assisted Bio-printing (LAB) of Cells and Bio-materials Based on Laser Induced Forward Transfer (LIFT)

  • Chapter
  • First Online:

Part of the book series: Biological and Medical Physics, Biomedical Engineering ((BIOMEDICAL))

Abstract

Laser assisted bio-printing (LAB) is an emerging and complementary technology in the field of tissue engineering envisaging biomimetics applications. LAB allows to print cells and liquid materials with a cell-level resolution, which is comparable to the complex histology of living tissues. By giving tissue engineers control on cell density and organization, LAB potentially holds promise to fabricate living tissues with biomimetic physiological functionality. In this chapter, the physical parameters related to laser induced forward transfer (LIFT) technique, which is implemented in the LAB, are presented. These parameters, such as laser pulse energy and bio-ink viscosity are critical to control the cell printing process. They must be tuned according to each other in order to print viable cell patterns with respect to cell-level histological organization. Processing time is a concern when addressing tissue engineering involving living material like cells. Therefore, concerns regarding the design and technical implementation of LAB based rapid prototyping workstation are discussed. Experimental requirements are described in order to fabricate tissues using LAB. Some typical multi-component printing, 3D printing approaches and bio-printing in vivo are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543. doi:10.1016/S0142-9612(00)00121-6

    Article  Google Scholar 

  2. Mironov V, Boland T, Trusk T et al (2003) Organ printing: computer-aided jet-based 3D tissue engineering. Trends Biotechnol 21:157–161. doi:10.1016/S0167-7799(03)00033-7

    Article  Google Scholar 

  3. Jakab K, Norotte C, Marga F et al (2010) Tissue engineering by self-assembly and bio-printing of living cells. Biofabrication 2:022001. doi:10.1088/1758-5082/2/2/022001

    Article  ADS  Google Scholar 

  4. Mironov V, Visconti RP, Kasyanov V et al (2009) Organ printing: tissue spheroids as building blocks. Biomaterials 30:2164–2174. doi:10.1016/j.biomaterials.2008.12.084

    Article  Google Scholar 

  5. Guillemot F, Mironov V, Nakamura M (2010) Bioprinting is coming of age. In: Report from the international conference on bioprinting and biofabrication in Bordeaux (3B’09). Biofabrication 2:010201. doi:10.1088/1758-5082/2/1/010201

  6. Klebe RJ (1988) Cytoscribing: a method for micropositioning cells and the construction of two- and three-dimensional synthetic tissues. Exp Cell Res 179:362–373. doi:10.1016/0014-4827(88)90275-3

    Article  Google Scholar 

  7. Klebe RJ, Thomas CA, Grant GM et al (1994) Cytoscription: computer controlled micropositioning of cell adhesion proteins and cells. Methods Cell Sci 16:189–192. doi:10.1007/BF01540648

    Google Scholar 

  8. Boland T, Xu T, Damon B, Cui X (2006) Application of inkjet printing to tissue engineering. Biotechnol J 1:910–917. doi:10.1002/biot.200600081

    Article  Google Scholar 

  9. Nakamura M, Kobayashi A, Takagi F et al (2005) Biocompatible inkjet printing technique for designed seeding of individual living cells. Tissue Eng 11:1658–1666. doi:10.1089/ten.2005.11.1658

    Article  Google Scholar 

  10. Saunders RE, Gough JE, Derby B (2008) Delivery of human fibroblast cells by piezoelectric drop-on-demand inkjet printing. Biomaterials 29:193–203. doi:10.1016/j.biomaterials.2007.09.032

    Article  Google Scholar 

  11. Brisbane (1971) Pattern Deposit by Laser-Google Patents

    Google Scholar 

  12. Young D, Auyeung RCY, Piqué A et al (2002) Plume and jetting regimes in a laser based forward transfer process as observed by time-resolved optical microscopy. Appl Surf Sci 197–198:181–187. doi:10.1016/S0169-4332(02)00322-7

    Article  Google Scholar 

  13. Bohandy J, Kim BF, Adrian FJ, (Aug1986) Metal deposition from a supported metal film using an excimer laser. J Appl Phys 60:1538–1539

    Google Scholar 

  14. Schiele NR, Corr DT, Huang Y et al (2010) Laser-based direct-write techniques for cell printing. Biofabrication 2:032001. doi:10.1088/1758-5082/2/3/032001

    Article  ADS  Google Scholar 

  15. Guillemot F, Souquet A, Catros S, Guillotin B (2010) Laser-assisted cell printing: principle, physical parameters versus cell fate and perspectives in tissue engineering. Nanomed 5:507–515. doi:10.2217/nnm.10.14

    Article  Google Scholar 

  16. Barron JA, Krizman DB, Ringeisen BR (2005) Laser printing of single cells: statistical analysis, cell viability, and stress. Ann Biomed Eng 33:121–130

    Article  Google Scholar 

  17. Barron JA, Wu P, Ladouceur HD, Ringeisen BR (2004) Biological laser printing: a novel technique for creating heterogeneous 3-dimensional cell patterns. Biomed Microdevices 6:139–147

    Article  Google Scholar 

  18. Guillotin B, Souquet A, Catros S et al (2010) Laser assisted bioprinting of engineered tissue with high cell density and microscale organization. Biomaterials 31:7250–7256. doi:10.1016/j.biomaterials.2010.05.055

    Article  Google Scholar 

  19. McGuigan AP, Sefton MV (2006) Vascularized organoid engineered by modular assembly enables blood perfusion. Proc Natl Acad Sci 103:11461–11466. doi:10.1073/pnas.0602740103

    Article  ADS  Google Scholar 

  20. McGuigan AP, Bruzewicz DA, Glavan A et al (2008) Cell encapsulation in sub-mm sized gel modules using replica molding. Plos One 3:e2258. doi:10.1371/journal.pone.0002258

    Article  ADS  Google Scholar 

  21. Voldman J (2006) Engineered systems for the physical manipulation of single cells. Curr Opin Biotechnol 17:532–537. doi:10.1016/j.copbio.2006.07.001

    Article  Google Scholar 

  22. Wu PK, Ringeisen BR (2010) Development of human umbilical vein endothelial cell (HUVEC) and human umbilical vein smooth muscle cell (HUVSMC) branch/stem structures on hydrogel layers via biological laser printing (BioLP). Biofabrication 2:014111. doi:10.1088/1758-5082/2/1/014111

    Article  ADS  Google Scholar 

  23. Gaebel R, Ma N, Liu J et al (2011) Patterning human stem cells and endothelial cells with laser printing for cardiac regeneration. Biomaterials 32(35):9218–9230

    Google Scholar 

  24. Koch L, Kuhn S, Sorg H et al (2009) Laser printing of skin cells and human stem cells. Tissue Eng Part C Methods 091221133515000: doi:10.1089/ten.tec.2009.0397

  25. Gruene M, Deiwick A, Koch L et al (2010) Laser printing of stem cells for biofabrication of scaffold-free autologous grafts. Tissue Eng Part C Methods 17:79–87. doi:10.1089/ten.tec.2010.0359

    Google Scholar 

  26. Gruene M, Pflaum M, Hess C et al (2011) Laser printing of three-dimensional multicellular arrays for studies of cell-cell and cell-environment interactions. Tissue Eng Part C Methods 110629135038006: doi:10.1089/ten.tec.2011.0185

  27. Catros S, Fricain J-C, Guillotin B et al (2011) Laser-assisted bioprinting for creating on-demand patterns of human osteoprogenitor cells and nano-hydroxyapatite. Biofabrication 3:025001. doi:10.1088/1758-5082/3/2/025001

    Article  ADS  Google Scholar 

  28. Duncan AC, Weisbuch F, Rouais F et al (2002) Laser microfabricated model surfaces for controlled cell growth. Biosens Bioelectron 17:413–426

    Article  Google Scholar 

  29. Claeyssens F, Hasan EA, Gaidukeviciute A et al (2009) Three-dimensional biodegradable structures fabricated by two-photon polymerization. Langmuir 25:3219–3223

    Article  Google Scholar 

  30. Lazare S, Tokarev V, Sionkowska A, Wiśniewski M (2005) Surface foaming of collagen, chitosan and other biopolymer films by KrF excimer laser ablation in the photomechanical regime. Appl Phys Mater Sci Process 81:465–470. doi:10.1007/s00339-005-3260-y

    Article  ADS  Google Scholar 

  31. Duocastella M, Colina M, Fernandez-Pradas JM et al (2007) Study of the laser-induced forward transfer of liquids for laser bioprinting. Appl Surf Sci 253:7855–7859. doi:10.1016/j.apsusc.2007.02.097

    Article  ADS  Google Scholar 

  32. Duocastella M, Fernández-Pradas JM, Serra P, Morenza JL (2008) Jet formation in the laser forward transfer of liquids. Appl Phys 93:453–456. doi:10.1007/s00339-008-4781-y

    Article  Google Scholar 

  33. Mezel C, Hallo L, Souquet A et al (2009) Self-consistent modeling of jet formation process in the nanosecond laser pulse regime. Phys Plasmas 16:123112. doi:10.1063/1.3276101

    Article  ADS  Google Scholar 

  34. Brown MS, Kattamis NT, Arnold CB (2010) Time-resolved study of polyimide absorption layers for blister-actuated laser-induced forward transfer. J Appl Phys 107:083103. doi:10.1063/1.3327432

    Article  ADS  Google Scholar 

  35. Duocastella M, Fernández-Pradas JM, Morenza JL et al (2010) Novel laser printing technique for miniaturized biosensors preparation. Sensors Actuators B Chem 145:596–600. doi:10.1016/j.snb.2009.11.055

    Article  Google Scholar 

  36. Engler AJ, Sen S, Sweeney HL, Discher DE (2006) Matrix elasticity directs stem cell lineage specification. Cell 126:677–689. doi:51

    Article  Google Scholar 

  37. Engler AJ, Humbert PO, Wehrle-Haller B, Weaver VM (2009) Multiscale modeling of form and function. Science 324:208–212. doi:10.1126/science.1170107

    Article  ADS  Google Scholar 

  38. Catros S, Guillotin B, Bacáková M et al (2011) Effect of laser energy, substrate film thickness and bioink viscosity on viability of endothelial cells printed by Laser-Assisted Bioprinting. Appl Surf Sci 257:5142–5147. doi:10.1016/j.apsusc.2010.11.049

    Article  ADS  Google Scholar 

  39. Gruene M, Pflaum M, Deiwick A et al (2011) Adipogenic differentiation of laser-printed 3D tissue grafts consisting of human adipose-derived stem cells. Biofabrication 3:015005. doi:10.1088/1758-5082/3/1/015005

    Article  ADS  Google Scholar 

  40. Schiele NR, Koppes RA, Corr DT et al (2009) Laser direct writing of combinatorial libraries of idealized cellular constructs: biomedical applications. Appl Surf Sci 255:5444–5447. doi:10.1016/j.apsusc.2008.10.054

    Article  ADS  Google Scholar 

  41. Raof NA, Schiele NR, Xie Y et al (2011) The maintenance of pluripotency following laser direct-write of mouse embryonic stem cells. Biomaterials 32:1802–1808. doi:10.1016/j.biomaterials.2010.11.015

    Article  Google Scholar 

  42. Othon CM, Wu X, Anders JJ, Ringeisen BR (2008) Single-cell printing to form three-dimensional lines of olfactory ensheathing cells. Biomed Mater 3:034101

    Article  Google Scholar 

  43. Ringeisen BR, Kim H, Barron JA et al (2004) Laser printing of pluripotent Embryonal Carcinoma cells. Tissue Eng 10:483–491

    Article  Google Scholar 

  44. Wang W, Huang Y, Grujicic M, Chrisey DB (2008) Study of impact-induced mechanical effects in cell direct writing using smooth particle hydrodynamic method. J Manuf Sci Eng 130:021012. doi:10.1115/1.2896118

    Article  Google Scholar 

  45. Hopp B, Smausz T, Kresz N et al (2005) Survival and proliferative ability of various living cell types after laser-induced forward transfer. Tissue Eng 11:1817–1823. doi:32

    Article  Google Scholar 

  46. Guillotin B, Guillemot F (2011) Cell patterning technologies for organotypic tissue fabrication. Trends Biotechnol 29:183–190. doi:10.1016/j.tibtech.2010.12.008

    Article  Google Scholar 

  47. Guillemot F, Souquet A, Catros S et al (2010) High-throughput laser printing of cells and biomaterials for tissue engineering. Acta Biomater 6:2494–2500. doi:10.1016/j.actbio.2009.09.029

    Article  Google Scholar 

  48. Moon S, Hasan SK, Song YS et al (2010) Layer bylayer three-dimensional tissue epitaxy by cell-laden hydrogel droplets. Tissue Eng Part C Methods 16:157–166. doi:10.1089/ten.tec.2009.0179

    Google Scholar 

  49. Lee W, Debasitis JC, Lee VK et al (2009) Multi-layered culture of human skin fibroblasts and keratinocytes through three-dimensional freeform fabrication. Biomaterials 30:1587–1595. doi:10.1016/j.biomaterials.2008.12.009

    Article  Google Scholar 

  50. Lee W, Pinckney J, Lee V et al (2009) Three-dimensional bioprinting of rat embryonic neural cells. NeuroReport 20:798–803. doi:10.1097/WNR.0b013e32832b8be4

    Article  Google Scholar 

  51. Catros S, Guillemot F, Nandakumar A et al (2012) Layer-by-layer tissue microfabrication supports cell proliferation in vitro and in vivo. Tissue Eng Part C Methods 18:62–70. doi:10.1089/ten.TEC.2011.0382

    Google Scholar 

  52. Pirlo RK, Wu P, Liu J, Ringeisen B (2012) PLGA/hydrogel biopapers as a stackable substrate for printing HUVEC networks via BioLP. Biotechnol Bioeng 109:262–273. doi:10.1002/bit.23295

    Article  Google Scholar 

  53. Lutolf MP, Blau HM (2009) Artificial stem cell Niches. Adv Mater 21:3255–3268. doi:10.1002/adma.200802582

    Article  Google Scholar 

  54. Keriquel V, Guillemot F, Arnault I et al (2010) In vivo bioprinting for computer—and robotic-assisted medical intervention: preliminary study in mice. Biofabrication 2:014101. doi:10.1088/1758-5082/2/1/014101

    Article  ADS  Google Scholar 

  55. Nelson CM, Tien J (2006) Microstructured extracellular matrices in tissue engineering and development. Curr Opin Biotechnol 17:518–523. doi:10.1016/j.copbio.2006.08.011

    Article  Google Scholar 

  56. Nelson CM (2009) Geometric control of tissue morphogenesis. Biochim Biophys Acta Bba-Mol Cell Res 1793:903–910. doi:10.1016/j.bbamcr.2008.12.014

    Article  Google Scholar 

  57. Baker RE, Gaffney EA, Maini PK (2008) Partial differential equations for self-organization in cellular and developmental biology. Nonlinearity 21:R251–R290. doi:10.1088/0951-7715/21/11/R05

    Article  ADS  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We acknowledge financial support from GIS-AMA (Advanced Materials in Aquitaine), ANR (Agence Nationale pour la Recherche), and Région Aquitaine.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabien Guillemot .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Guillotin, B., Catros, S., Guillemot, F. (2013). Laser Assisted Bio-printing (LAB) of Cells and Bio-materials Based on Laser Induced Forward Transfer (LIFT). In: Schmidt, V., Belegratis, M. (eds) Laser Technology in Biomimetics. Biological and Medical Physics, Biomedical Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41341-4_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41341-4_8

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41340-7

  • Online ISBN: 978-3-642-41341-4

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics