Skip to main content

Part of the book series: SpringerBriefs in Electrical and Computer Engineering ((BRIEFSELECTRIC))

  • 1406 Accesses

Abstract

This chapter initially presents an overview of the power quality issues. Then three common international standards relating to the voltage and current distortion are introduced. In order to provide a cost-effective three-phase shunt current quality compensator with resonances prevention capability, different hybrid active filter (HAPF) topologies have been compared and discussed in detail. Among them, one HAPF topology is chosen for in-depth investigation and further study in this book because it can offer the lowest cost, size, and weight, and has potential to provide dynamic reactive power compensation. Owning to the limitations of this HAPF, this book aims to provide their corresponding solutions. Finally, the organization of this book is introduced at the end of this chapter.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. H. Akagi, Trends in active power line conditioners. IEEE Trans. Power Electron. 9(3), 263–268 (1994)

    Article  Google Scholar 

  2. H. Akagi, New trends in active filters for power conditioning. IEEE Trans. Ind. Appl. 32(6), 1312–1322 (1996)

    Google Scholar 

  3. H. Fujita, H. Akagi, A practical approach to harmonic compensation in power systems–series connection of passive and active filters. IEEE Trans. Ind. Applicat. 27(6), 1020–1025 (1991)

    Google Scholar 

  4. F.Z. Peng, H. Akagi, A. Nabae, A new approach to harmonic compensation in power systems–a combined system of shunt passive and series active filters, IEEE Trans. Ind. Applicat. 26(6), 983–990 (1990)

    Google Scholar 

  5. L. Chen, A.V. Jouanne, A comparison and assessment of hybrid filter topologies and control algorithms, in Proceedings of IEEE 32nd Annual Power Electronics Specialists Conference, PESC 01, vol. 2, 2001, pp. 565–570

    Google Scholar 

  6. F.Z. Peng, H. Akagi, A. Nabae, Compensation characteristics of the combined system of shunt passive and series active filters. IEEE Trans. Ind. Applicat. 29(1), 144–152 (1993)

    Google Scholar 

  7. P. Salmerón, S.P. Litrán, A control strategy for hybrid power filter to compensate four-wires three-phase systems. IEEE Trans. Power Electron. 25(7), 1923–1931 (2010)

    Article  Google Scholar 

  8. P. Salmeron, S.-P. Litran, Improvement of the electric power quality using series active and shunt passive filters. IEEE Trans. Power Del. 25(2), 1058–1067 (2010)

    Article  Google Scholar 

  9. S. Khositkasame, S. Sangwongwanich, Design of harmonic current detector and stability analysis of a hybrid parallel active filter. in Proceedings of Power Conversion Conference, vol. 1, 1997, pp. 181–186

    Google Scholar 

  10. Z. Chen, F. Blaabjerg, J.K. Pedersen, Harmonic resonance damping with a hybrid compensation system in power systems with dispersed generation, in IEEE 35th Annual Power Electronics Specialists Conference, PESC 04, vol. 4, 2004, pp. 3070–3076

    Google Scholar 

  11. H.-K. Chiang, B.-R. Lin, K.-T. Yang, K.-W. Wu, Hybrid active power filter for power quality compensation, in International Conference on Power Electronics and Drives Systems, PEDS 2005, vol. 2, 2005, pp. 949–954

    Google Scholar 

  12. V.F. Corasaniti, M.B. Barbieri, P.L. Arnera, M.I. Valla, Hybrid active filter for reactive and harmonics compensation in a distribution network. IEEE Trans. Ind. Electron. 56(3), 670–677 (2009)

    Article  Google Scholar 

  13. R. Khanna, S.T. Chacko, N. Goel, Performance and investigation of hybrid filters for Power Quality Improvement, in 5th International Power Engineering and Optimization Conference, PEOCO, 2011, pp. 93–97

    Google Scholar 

  14. S.T. Senini, P.J. Wolfs, Systematic identification and review of hybrid active filter topologies, in Proceedings of. IEEE 33rd Annual Power Electronics Specialists Conference, PESC. 02, vol. 1, 2002, pp. 394–399

    Google Scholar 

  15. S. Senini, P.J. Wolfs, Analysis and design of a multiple-loop control system for a hybrid active filter. IEEE Trans. Ind. Electron. 49(6), 1283–1292 (2002)

    Article  Google Scholar 

  16. J.-H. Sung, S. Park, K. Nam, New hybrid parallel active filter configuration minimising active filter size, IEEE Proc. Electr. Power Applicat. 147(2), 93–98 (2000)

    Google Scholar 

  17. D. Rivas, L. Moran, J.W. Dixon et al., Improving passive filter compensation performance with active techniques. IEEE Trans. Ind. Electron. 50(1), 161–170 (2003)

    Article  Google Scholar 

  18. H. Fujita, T. Yamasaki, H. Akagi, A hybrid active filter for damping of harmonic resonance in industrial power systems. IEEE Trans. Power Electron. 15(2), 215–222 (2000)

    Article  Google Scholar 

  19. H. Akagi, S. Srianthumrong, Y. Tamai, Comparisons in circuit configuration and filtering performance between hybrid and pure shunt active filters, in Conference. Record of IEEE-IAS Annual Meeting, vol. 2, 2003, pp. 1195–1202

    Google Scholar 

  20. S. Srianthumrong, H. Akagi, A medium-voltage transformerless AC/DC Power conversion system consisting of a diode rectifier and a shunt hybrid filter. IEEE Trans. Ind. Applicat. 39(3), 874–882 (2003)

    Google Scholar 

  21. W. Tangtheerajaroonwong, T. Hatada, K. Wada, H. Akagi, Design and performance of a transformerless shunt hybrid filter integrated into a three-phase diode rectifier. IEEE Trans. Power Electron. 22(5), 1882–1889 (2007)

    Article  Google Scholar 

  22. H.-L. Jou, K.-D. Wu, J.-C. Wu, C.-H. Li, M.-S. Huang, Novel power converter topology for three phase four-wire hybrid power filter, IET Power Electron. (1)1 164–173 (2008)

    Google Scholar 

  23. R. Inzunza, H. Akagi, A 6.6-kV transformerless shunt hybrid active filter for installation on a power distribution system. IEEE Trans. Power Electron. 20(4), 893–900 (2005)

    Article  Google Scholar 

  24. V.-F. Corasaniti, M.-B. Barbieri, P.-L. Arnera, M.-I. Valla, Hybrid power filter to enhance power quality in a medium voltage distribution. IEEE Trans. Ind. Electron. 56(8), 2885–2893 (2009)

    Article  Google Scholar 

  25. S. Rahmani, A. Hamadi, N. Mendalek, K. Al-Haddad, A new control technique for three-phase shunt hybrid power filter. IEEE Trans. Ind. Electron. 56(8), 2904–2915 (2009)

    Article  Google Scholar 

  26. N.-Yi Dai, A generalized 3D pulse width modulator for multi-level voltage source inverters in three-phase four-wire power systems, Ph.D. thesis, University of Macau, 2007

    Google Scholar 

  27. IEEE Standard, IEEE Recommended Practices and Requirements for Harmonic Control in Electrical Power Systems, 1992, pp. 519–1992

    Google Scholar 

  28. IEEE Standard, IEEE Recommended Practice on Monitoring Electric Power Quality, 1995, 1159:1995

    Google Scholar 

  29. IEC Standard, Electromagnetic Compatibility (EMC), Part 3: limits, Section 2: limits for Harmonics Current Emissions (Equipment Input Current ≤ 16 A Per Phase), 61000-3-2, 1997

    Google Scholar 

  30. M.-C. Wong, J. Tang, Y.-D. Han, Cylindrical coordinate control of three-dimensional PWM technique in three-phase four-wired trilevel inverter. IEEE Trans. Power Electron. 18(1), 208–220 (2003)

    Article  Google Scholar 

  31. D.M. Brod, D.W. Novotny, Current control of VSI-PWM inverters. IEEE Trans. Ind. Applicat. (21)3, 562–570 (1985)

    Google Scholar 

  32. C.-S. Lam, M.-C. Wong, Y.-D. Han, Investigation of LC-hybrid active power filters in resonances prevention and compensation capabilities, in IEEE Asia Pacific Conference on Postgraduate Research in Micro-Electronics (PrimeAsia), Oct. 2011, pp. 21–24

    Google Scholar 

  33. C.-S. Lam, M.-C. Wong, Y.-D. Han, Hysteresis current control of hybrid active power filters. IET Power Electron. 5(7), 1175–1187 (2012)

    Article  Google Scholar 

  34. C.-S. Lam, W.-H. Choi, M.-C. Wong, Y.-D. Han, Adaptive dc-link voltage controlled hybrid active power filters for reactive power compensation. IEEE Trans. Power Electron. 27(4), 1758–1772 (2012)

    Article  Google Scholar 

  35. W.-H. Choi, C.-S. Lam, M.-C. Wong, Y.-D. Han, Analysis of dc-link voltage controls in three-phase four-wire hybrid active power filters. IEEE Trans. Power Electron. 28(5), 2180–2191 (2013)

    Article  Google Scholar 

  36. C.-S. Lam, X–.X. Cui, W.-H. Choi, M.-C. Wong, Y.-D. Han, Minimum inverter capacity design for three-phase four-wire LC-hybrid active power filters. IET Power Electron. 5(7), 956–968 (2012)

    Article  Google Scholar 

  37. C.-S. Lam, M.-C. Wong, W.-H. Choi, X.-X. Cui, H.-M. Mei, J.-Z. Liu, Design and performance of an adaptive low dc voltage controlled LC-hybrid active power filter with a neutral inductor in three-phase four-wire power systems IEEE Trans. Ind. Electron., in press

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chi-Seng Lam .

Rights and permissions

Reprints and permissions

Copyright information

© 2014 The Author(s)

About this chapter

Cite this chapter

Lam, CS., Wong, MC. (2014). Introduction. In: Design and Control of Hybrid Active Power Filters. SpringerBriefs in Electrical and Computer Engineering. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41323-0_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41323-0_1

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41322-3

  • Online ISBN: 978-3-642-41323-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics