Skip to main content

Implementation in the Pyvib2 program of the localized mode method and application to a helicene

  • Regular Article
  • Chapter
  • First Online:
  • 1058 Accesses

Part of the book series: Highlights in Theoretical Chemistry ((HITC,volume 6))

Abstract

In this paper, after reviewing key elements for simulating and interpreting IR, Raman, VCD, and ROA spectra, as well as after describing the localized mode procedure, we present a graphical user interface to carry out the normal mode localizations and we illustrate its application on the ROA spectra of the [19]helicene molecule. The overall procedure consists of four steps, and therefore, a specific interface has been designed for each of them. The first and most important part of the procedure is the selection of the mode ensemble under which the localization procedure is performed. Then, during our stepby- step guided tour of the localized mode procedure in Pyvib2, we highlight the importance of the ordering of the localized modes and the importance to set correctly the phase factor between the localized modes. Finally, the vibrational coupling matrix (\(\boldsymbol{\tilde{\Omega}}\) ), the intensity coupling matrix (Ĩ), and the unitary transformation matrix (U) can be analyzed from their representation in the different panels. The ROA spectrum of the [19]helicene molecule is dominated by the positive peaks associated with two normal modes. From the localized mode procedure, we have identified the atomic displacements of these modes as a few-node combination of localized modes characterized by atomic displacements that look like the motion of a “claw”.

Published as part of the special collection of articles celebrating theoretical and computational chemistry in Belgium

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Quinet O, Champagne B (2002) J Chem Phys 117:2481

    Article  CAS  Google Scholar 

  2. Quinet O, Champagne B, Rodriguez V (2004) J Chem Phys 121:4705

    Article  CAS  Google Scholar 

  3. Mani A, Schultz Z, Caudano Y, Champagne B, Humbert C, Dreesen L, Gewirth A, White JO, Thiry PA, Peremans A (2004) J Phys Chem B 108:16135

    Article  CAS  Google Scholar 

  4. Guthmuller J, Cecchet F, Lis D, Caudano Y, Mani AA, Thiry PA, Peremans A, Champagne B (2009) ChemPhysChem 10:2132

    Article  CAS  Google Scholar 

  5. Liégeois V, Ruud K, Champagne B (2007) J Chem Phys 127:204105

    Article  Google Scholar 

  6. Drooghaag X, Marchand-Brynaert J, Champagne B, Liégeois V (2010) J Phys Chem B 114:11753

    Article  CAS  Google Scholar 

  7. Liégeois V, Champagne B (2011) J Phys Chem A 115:13706

    Article  Google Scholar 

  8. Fedorovsky M (2007) Pyvib2, a program for analyzing vibrational motion and vibrational spectra. http://pyvib2.sourceforge.net

  9. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr., Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09 Revision A.1. Gaussian Inc., Wallingford, CT

    Google Scholar 

  10. Dalton, a molecular electronic structure program, Release Dalton2011 (2011) see http://daltonprogram.org/.

  11. Hug W (2001) Chem Phys 264:53

    Article  CAS  Google Scholar 

  12. Hug W, Fedorovsky M (2008) Theor Chem Acc 119:113

    Article  CAS  Google Scholar 

  13. Fedorovsky M (2006) Comput Lett 2:233

    Article  CAS  Google Scholar 

  14. Jacob CR, Reiher M (2009) J Chem Phys 130:084106

    Article  Google Scholar 

  15. Martin RH (1974) Angew Chem Int Ed 13:649

    Article  Google Scholar 

  16. Autschbach J, Patchkovskii S, Ziegler T, van Gisbergen SJA, Baerends EJ (2002) J Chem Phys 117:581

    Article  CAS  Google Scholar 

  17. Furche F, Ahlrichs R, Wacksmann C, Weber E, Sobanski A, Vögtle F, Grimme S (2000) J Am Chem Soc 122:1717

    Article  CAS  Google Scholar 

  18. Autschbach J, Ziegler T, van Gisbergen SJA, Baerends EJ (2002) J Chem Phys 116:6930

    Article  CAS  Google Scholar 

  19. Spassova M, Asselberghs I, Verbiest T, Clays K, Botek E, Champagne B (2007) Chem Phys Lett 439:213

    Article  CAS  Google Scholar 

  20. Botek E, Champagne B (2007) J Chem Phys 127:204101

    Article  Google Scholar 

  21. Verbiest T, Elshocht SV, Kauranen M, Hellemans L, Snauwaert J, Nuckolls C, Katz TJ, Persoons A (1998) Science 282:913

    Article  CAS  Google Scholar 

  22. Verbiest T, Sioncke S, Persoons A, Vyklicky L, Katz TJ (2002) Angew Chem Int Ed 41:3882

    Article  CAS  Google Scholar 

  23. Jansík B, Rizzo A, Ågren H, Champagne B (2008) J Chem Theory Comput 4:457

    Article  Google Scholar 

  24. Liégeois V, Liégeois V (2009) J Comput Chem 30:1261

    Article  Google Scholar 

  25. Wilson EB, Decius JC, Cross PC (1980) Molecular vibrations: the theory of infrared and Raman vibrational spectra (Dover Books on Chemistry). Dover Publications, New York

    Google Scholar 

  26. Barron LD, Buckingham AD (1971) Mol Phys 20:1111

    Article  CAS  Google Scholar 

  27. Hug W (2002) In: Chalmers JM, Griffiths PR (eds) Handbook of vibrational spectroscopy. Wiley, New York, p 175

    Google Scholar 

  28. Barron LD (2004) Molecular light scattering and optical activity, 2 edn. Cambridge University Press, Cambridge

    Book  Google Scholar 

  29. Stephens PJ (1985) J Phys Chem 89:748

    Article  CAS  Google Scholar 

  30. Stephens PJ (1987) J Phys Chem 91:1712

    Article  CAS  Google Scholar 

  31. Cheeseman JR, Frisch MJ, Devlin FJ, Stephens PJ (1996) Chem Phys Lett 252:211

    Article  CAS  Google Scholar 

  32. He Y, Bo W, Dukor RK, Nafie LA (2011) Appl Spectrosc 65:699

    Article  CAS  Google Scholar 

  33. Neugebauer J, Reiher M, Kind C, Hess B (2002) J Comput Chem 23:895

    Article  CAS  Google Scholar 

  34. Buckingham AD (1967) Adv Chem Phys 12:107

    Article  CAS  Google Scholar 

  35. Komornicki A, Fitzgerald G (1993) J Chem Phys 98:1398

    Article  CAS  Google Scholar 

  36. Hehre WJ, Ditchfield R, Pople JA (1972) J Chem Phys 56:2257

    Article  CAS  Google Scholar 

  37. Scott AP, Radom L (1996) J Phys Chem 100:16502

    Article  CAS  Google Scholar 

  38. Irikura KK, Johnson RD III, Kacker RN (2005) J Phys Chem A 109:8430

    Article  CAS  Google Scholar 

  39. Merrick J, Moran D, Radom L (2007) J Phys Chem A 111:11683

    Article  CAS  Google Scholar 

  40. Zuber G, Hug W (2004) J Phys Chem A 108:2108

    Article  CAS  Google Scholar 

  41. Binkley JS, Pople JA, Hehre WJ (1980) J Am Chem Soc 102:939

    Article  CAS  Google Scholar 

  42. Pecul M, Rizzo A (2003) Mol Phys 101:2073

    Article  CAS  Google Scholar 

  43. Reiher M, Liégeois V, Ruud K (2005) J Phys Chem A 109:7567

    Article  CAS  Google Scholar 

  44. Pecul M, Ruud K (2005) Int J Quantum Chem 104:816

    Article  CAS  Google Scholar 

  45. Cheeseman JR, Shaik MS, Popelier PLA, Blanch EW (2011) J Am Chem Soc 133:4991

    Article  CAS  Google Scholar 

  46. Cheeseman JR, Frisch MJ (2011) J Chem Theory Comput 7:3323

    Article  CAS  Google Scholar 

  47. Perera SA, Bartlett RJ (1999) Chem Phys Lett 314:381

    Article  CAS  Google Scholar 

  48. Crawford TD, Ruud K (2011) ChemPhysChem 12:3442

    Article  CAS  Google Scholar 

  49. Joshi SP, Dutta AK, Pal S, Vaval N (2012) Chem Phys 403:25

    Article  CAS  Google Scholar 

  50. Jacob CR, Luber S, Reiher M (2009) J Phys Chem B 113:6558

    Article  CAS  Google Scholar 

  51. Jacob CR, Luber S, Reiher M (2009) Chem Eur J 15:13491

    Article  CAS  Google Scholar 

  52. Liégeois V, Jacob CR, Champagne B, Reiher M (2010) J Phys Chem A 114:7198

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vincent Liégeois .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Liégeois, V., Champagne, B. (2014). Implementation in the Pyvib2 program of the localized mode method and application to a helicene. In: Champagne, B., Deleuze, M., De Proft, F., Leyssens, T. (eds) Theoretical Chemistry in Belgium. Highlights in Theoretical Chemistry, vol 6. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41315-5_19

Download citation

Publish with us

Policies and ethics