Heterogeneous Testbeds, Tools and Experiments –Measurement Requirements Perspective

  • Anastasius Gavras
  • Andrzej Bak
  • Gergely Biczók
  • Piotr Gajowniczek
  • András Gulyás
  • Halid Hrasnica
  • Pedro Martinez-Julia
  • Felicián Németh
  • Chrysa Papagianni
  • Symeon Papavassiliou
  • Marcin Pilarski
  • Antonio Skarmeta
Part of the Lecture Notes in Computer Science book series (LNCS, volume 7586)


Federated testbeds for future Internet experimentation have been deployed worldwide to enable large scale and diverse experiments with future Internet technologies ranging from components to complete systems. They serve the purpose of validating new solutions to identified problems and to compare them with current or other evolving solutions. The proliferation of management frameworks and in particular of measurement and monitoring tools poses often a great challenge for the experimenter. OpenLab is addressing the interoperability of testbeds at several levels. In this article we describe how the OpenLab testbeds cope with divergent measurement and monitoring requirements originating from four identified experiments that each of them has its own original research objectives.


Future Internet Research and Experimentation FIRE monitoring measurement experimental research methodology 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
  2. 2.
    PlanetLab Europe,
  3. 3.
  4. 4.
  5. 5.
    European Traffic Observatory Measurement InfrastruCture (ETOMIC),
  6. 6.
  7. 7.
  8. 8.
    Gavras, A., Karila, A., Fdida, S., May, M., Potts, M.: Future Internet Research and Experimentation. ACM SIGCOMM Computer Communication Review 37(3), 89 (2007), CrossRefGoogle Scholar
  9. 9.
    Gavras, A. (ed.): Experimentally driven research, white paper, On the existence of experimentally-driven research methodology, Version 1 (April 2010), (downloaded July 2012)
  10. 10.
    IPLAYER, BBC iPlayer TV Home,
  11. 11.
    HULU, Watch TV. Watch Movies,
  12. 12.
    NETFLIX, Watch TV Shows Online, Watch Movies Online,
  13. 13.
    Torres, R., Finamore, A., Kim, J.R., Mellia, M., Munafò, M.M., Rao, S.: Dissecting Video Server Selection Strategies in the YouTube CDN. In: The 31st International Conference on Distributed Computing Systems (ICDCS 2011), Minneapolis, MN, USA, June 20-24 (2011)Google Scholar
  14. 14.
    Adhikari, V.K., Jain, S., Chen, Y., Zhang, Z.-L.: Reverse Engineering the YouTube Video Delivery Cloud. In: IEEE HotMD 2011 (2011)Google Scholar
  15. 15.
    Adhikari, V.K., Jain, S., Chen, Y., Zhang, Z.-L.: Where Do You “Tube”? Uncovering YouTube Server Selection Strategy. In: IEEE ICCCN 2011 (2011)Google Scholar
  16. 16.
    Huang, C., Wang, A., Li, J., Ross, K.W.: Measuring and Evaluating Large-Scale CDNs. In: IMC 2008, Vouliagmeni, Greece, October 20-22 (2008)Google Scholar
  17. 17.
    Pathan, A.-M.K., Buyya, R., Vakali, A.: Content Delivery Networks: State of the Art, Insights, and Imperatives. In: Content Delivery Networks. Lecture Notes in Electrical Engineering, vol. 9(1), pp. 3–32. Springer, Heidelberg (2008), doi:10.1007/978-3-540-77887-5CrossRefGoogle Scholar
  18. 18.
    Broberg, J., Buyya, R., Tari, Z.: MetaCDN: Harnessing ‘Storage Clouds’ for high performance content delivery. Journal of Network and Computer Applications 32(5), 1012–1022 (2009), doi:10.1016/j.jnca.2009.03.004.CrossRefGoogle Scholar
  19. 19.
    Leivadeas, A., Pappagianni, C., Papavassiliou, S.: Efficient Resource Mapping Framework over Networked Clouds via Iterated Local Search based Request Partitioning. To Appear in IEEE Transactions on Parallel and Distributed Systems (2012) (in press)Google Scholar
  20. 20.
    Vassilaras, S., Yovanof, G.: Wireless Going in the Cloud: A Promising Concept or Just Marketing Hype? Special Issue: Distributed and Secure Cloud Clustering, Wireless Personal Communications 58(1), 5–16 (2010), doi:10.1007/s11277-011-0284-9.CrossRefGoogle Scholar
  21. 21.
    Katsaros, D., Dimokas, N., Tassiulas, L.: Social network analysis concepts in the design of wireless ad hoc network protocols. IEEE Network 24(6), 23–29 (2010)CrossRefGoogle Scholar
  22. 22.
    Pappagianni, C., Leivadeas, A., Papavassiliou, S.: A Cloud-oriented Content Delivery Network Paradigm: Modelling and Assessment. Under Review, IEEE TDSC Special Issue on Cloud Computing Assessment: Metrics, Algorithms, Policies, Models, and Evaluation TechniquesGoogle Scholar
  23. 23.
    Leivadeas, A., Pappagianni, C., Papavassiliou, S.: Socio-aware Virtual Network Embedding. To Appear in IEEE Network Magazine (2012) (in press)Google Scholar
  24. 24.
    Chen, F., Guo, K., Lin, J., La Porta, T.F.: Intra-cloud Lightning: Building CDNs in the Cloud. In: IEEE INFOCOM, pp. 433–441 (March 2012), doi:10.1109/INFCOM.2012.6195782Google Scholar
  25. 25.
    Sarma, A.C., Girao, J.: Identities in the future internet of things. Wireless Personal Communications 49(3), 353–363 (2009)CrossRefGoogle Scholar
  26. 26.
    Papadimitriou, D., Zahariadis, T., Martinez-Julia, P., Papafili, I., Morreale, V., Torelli, F., Sales, B., Demeester, P.: Design principles for the future internet architecture. In: Álvarez, F., et al. (eds.) FIA 2012. LNCS, vol. 7281, pp. 55–67. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  27. 27.
  28. 28.
    National Institute of Information and Communications Technology, “AKARI” Architecture Design Project for New Generation Network (2010),
  29. 29.
    Martinez-Julia, P., Gomez-Skarmeta, A.F., Kafle, V.P., Inoue, M.: Secure and robust framework for id/locator mapping system. IEICE Transactions on Information and Systems E95-D, 108–116 (2012)Google Scholar
  30. 30.
    Kafle, V.P., Inoue, M.: HIMALIS: Heterogeneity inclusion and mobility adaptation through locator id separation in new generation network. IEICE Transactions on Communications E93-B(3), 478–489 (2010)Google Scholar
  31. 31.
    Kafle, V.P., Otsuki, H., Inoue, M.: An id/locator split architecture for future networks. IEEE Communications Magazine 48(2), 138–144 (2010)CrossRefGoogle Scholar
  32. 32.
    Gomez-Skarmeta, A.F., Martinez-Julia, P., Girao, J., Sarma, A.: Identity based architecture for secure communication in future internet. In: Proceedings of the 6th ACM Workshop on Digital Identity Management, pp. 45–48. ACM, New York (2010)CrossRefGoogle Scholar
  33. 33.
    Martinez-Julia, P., Gomez-Skarmeta, A.F., Girao, J., Sarma, A.: Protecting digital identities in future networks. In: Proceedings of the Future Network and Mobile Summit 2011. International Information Management Corporation, pp. 1–8 (2011)Google Scholar
  34. 34.
    Huston, G.: BGP reports (July 2007),
  35. 35.
    Meyer, D., Zhang, L., Fall, K.: Report from the IAB workshop on routing and addressing. RFC 4984 (2007)Google Scholar
  36. 36.
    Csernai, M., Gulyás, A., Rétvári, G., Heszberger, Z., Császár, A.: The skeleton of the Internet. In: Proceedings of GLOBECOM 2010 Conference, Miami, Florida, December 6-10, vol. 2, pp. 1208–1212 (2010)Google Scholar
  37. 37.
    Gulyás, A., Kőrösi, A., Rétvári, G., Bíró, J., Szabó, D.: Network Formation Games Can Give Rise to Realistic Networks. In: Proceedings of ACM PODC, Funchal, Portugal, July 15-18 (2012)Google Scholar
  38. 38.
    Németh, F., Stipkovits, Á., Sonkoly, B., Gulyás, A.: Towards SmartFlow: Case Studies on Enhanced Programmable Forwarding in OpenFlow Switches. In: Proceedings of ACM SIGCOMM Demo, Helsinki, Finland, August 13-17 (2012)Google Scholar
  39. 39.
    Lacage, M., Ferrari, M., Hansen, M., Turletti, T., Dabbous, W.: NEPI: using independent simulators, emulators, and testbeds for easy experimentation. ACM SIGOPS Operating Systems Review 43(4), 60–65 (2010)CrossRefGoogle Scholar
  40. 40.
    Triukose, S., Wen, Z., Rabinovich, M.: Measuring a Commercial Content Delivery Network. In: WWW 2011 Proc. of the 20th International Conference on World Wide Web (2011)Google Scholar
  41. 41.
    Leighton, T.: Given the Internet’s bottlenecks, how can we build fast, scalable, content-delivery systems. Communications of the ACM 52(2) (2009),
  42. 42.
    Wong, B., Slivkins, A., Sirer, E.G.: Meridian, A Lightweight Network Location Service without Virtual Coordinates. In: SIGCOMM 2005, Philadelphia, Pennsylvania, USA, August 21-26 (2005)Google Scholar
  43. 43.
    Wong, B., Stoyanov, I., Sirer, E.G.: Octant: A Comprehensive Framework for the Geolocalization of Internet Hosts. In: Symposium on Networked System Design and Implementation, NSDI (2007)Google Scholar
  44. 44.
    Martinez-Julia, P., Jara, A.J., Skarmeta, A.F.: GAIA Extended Research Infrastructure: Sensing, Connecting, and Processing the Real World. In: Korakis, T., Zink, M., Ott, M. (eds.) TridentCom 2012. LNICST, vol. 44, pp. 3–4. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  45. 45.
    OMF (cOntrol and Management Framework) (2012),
  46. 46.
    Quereilhac, A., Lacage, M., Freire, C., Turletti, T., Dabbous, W.: NEPI: An Integration Framework for Ntwork Experimentation. In: Softcom (2011)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Anastasius Gavras
    • 1
  • Andrzej Bak
    • 5
  • Gergely Biczók
    • 3
  • Piotr Gajowniczek
    • 5
  • András Gulyás
    • 2
  • Halid Hrasnica
    • 1
  • Pedro Martinez-Julia
    • 6
  • Felicián Németh
    • 2
  • Chrysa Papagianni
    • 4
  • Symeon Papavassiliou
    • 4
  • Marcin Pilarski
    • 5
  • Antonio Skarmeta
    • 6
  1. 1.Eurescom GmbHGermany
  2. 2.Budapest University of Technology and EconomicsHungary
  3. 3.Norwegian University of Science and TechnologyNorway
  4. 4.National Technical University of AthensGreece
  5. 5.Warsaw University of TechnologyPoland
  6. 6.University of MurciaSpain

Personalised recommendations