Skip to main content

Information Retrieval in Life Sciences: A Programmatic Survey

  • Chapter
  • First Online:

Abstract

Biomedical databases are a major resource of knowledge for research in the life sciences. The biomedical knowledge is stored in a network of thousands of databases, repositories and ontologies. These data repositories differ substantially in granularity of data, storage formats, database systems, supported data models and interfaces. In order to make full use of available data resources, the high number of heterogeneous query methods and frontends requires high bioinformatic skills. Consequently, the manual inspection of database entries and citations is a time-consuming task for which methods from computer science should be applied.Concepts and algorithms from information retrieval (IR) play a central role in facing those challenges. While originally developed to manage and query less structured data, information retrieval techniques become increasingly important for the integration of life science data repositories and associated information. This chapter provides an overview of IR concepts and their current applications in life sciences. Enriched by a high number of selected references to pursuing literature, the following sections will successively build a practical guide for biologists and bioinformaticians.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Notes

  1. 1.

    http://www.ncbi.nlm.nih.gov/pubmed/

  2. 2.

    http://dblp.uni-trier.de/

  3. 3.

    http://www.ics.uci.edu/~fielding/pubs/dissertation/rest_arch_style.htm

  4. 4.

    http://www.w3.org/TR/soap/

  5. 5.

    http://www.kegg.jp/kegg/xml/

  6. 6.

    http://www.mged.org/Workgroups/MAGE/

  7. 7.

    The computational modelling in biology network, COMBINE, http://co.mbine.org/.

  8. 8.

    http://www.uniprot.org/uniprot/Q8W413

  9. 9.

    http://www.expasy.org/enzyme/3.2.1.26

  10. 10.

    http://www.arabidopsis.org/servlets/TairObject?type=locus&name=AT2G36190

  11. 11.

    http://www.uniprot.org/?tab=mapping

  12. 12.

    http://dublincore.org/documents/dces

  13. 13.

    http://schema.datacite.org/meta/kernel-2.2/index.html

  14. 14.

    http://en.wikipedia.org/wiki/List_of_search_engines#Desktop_search_engines

  15. 15.

    http://lucene.apache.org/solr/

  16. 16.

    http://lucene.apache.org

  17. 17.

    http://flamenco.berkeley.edu/demos.html

  18. 18.

    https://www.ebi.ac.uk/chembl/malaria/target/browser/classification

  19. 19.

    http://sabio.h-its.org

  20. 20.

    http://gbis.ipk-gatersleben.de/gbis_i/home.jsf

  21. 21.

    http://www.ensembl.org

  22. 22.

    http://urgi.versailles.inra.fr/gnpis

  23. 23.

    http://www.ncbi.nlm.nih.gov/Taxonomy/

  24. 24.

    http://www.ebi.ac.uk/miriam/main/mdb?section=qualifiers

  25. 25.

    Twenty-fourth release of BioModels Database, December 2012.

  26. 26.

    http://code.google.com/p/path2models/

  27. 27.

    http://www.ebi.ac.uk/biomodels-main/BIOMD0000000241

  28. 28.

    http://bio2rdf.org/

References

  1. Achard F, Vaysseix G, Barillot E (2001) XML, bioinformatics and data integration. Bioinformatics 17(2):115–125

    Article  Google Scholar 

  2. Adams M, Kelley J, Gocayne J, Dubnick M, Polymeropoulos M, Xiao H, Merril C, Wu A, Olde B, Moreno R, Kerlavage A, McCombie W, Venter J (1991) Complementary DNA sequencing: expressed sequence tags and human genome project. Science 252(5013):1651–1656

    Article  Google Scholar 

  3. Adomavicius G, Tuzhilin A (2005) Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions. IEEE Trans Knowl Data Eng 17(6):734–749

    Article  Google Scholar 

  4. Agichtein E, Brill E, Dumais S (2006) Improving web search ranking by incorporating user behavior information. In: SIGIR’06: proceedings of the 29th annual international ACM SIGIR conference on research and development in information retrieval, Seattle. ACM, New York, pp 19–26

    Google Scholar 

  5. Andrade L, Silva MJ (2006) Relevance ranking for geographic IR. In: Workshop on geographic information retrieval, SIGIR’06, Seattle

    Google Scholar 

  6. Ashburner M, Ball CA, Blake JA, Botstein D, Butler H, Cherry JM, Davis AP, Dolinski K, Dwight SS, Eppig JT, Harris MA, Hill DP, Issel-Tarver L, Kasarskis A, Lewis S, Matese JC, Richardson JE, Ringwald M, Rubin GM, Sherlock G (2000) Gene ontology: tool for the unification of biology. Nat Genet 25(1):25–29

    Article  Google Scholar 

  7. Avraham S, Tung CW, Ilic K, Jaiswal P, Kellogg EA, McCouch S, Pujar A, Reiser L, Rhee SY, Sachs MM, Schaeffer M, Stein L, Stevens P, Vincent L, Zapata F, Ware D (2008) The plant ontology database: a community resource for plant structure and developmental stages controlled vocabulary and annotations. Nucl Acids Res 36(suppl_1):D449–D454

    Google Scholar 

  8. Baeza Yates RA, Neto BR (1999) Modern information retrieval. Addison-Wesley Longman Publishing Co., Inc., Boston

    Google Scholar 

  9. Bairoch A, Apweiler R, Wu CH, Barker WC, Boeckmann B, Ferro S, Gasteiger E, Huang H, Lopez R, Magrane M, Martin MJ, Natale DA, O’Donovan C, Redaschi N, Yeh LL (2005) The universal protein resource (UniProt). Nucl Acids Res 33(suppl_1):D154–D159

    Google Scholar 

  10. Bard JBL, Rhee SY (2004) Ontologies in biology: design, applications and future challenges. Nat Rev Genet 5(3):213–222

    Article  Google Scholar 

  11. Bentley DR, Balasubramanian S, Swerdlow HP, Smith GP, Milton J, Brown CG, Hall KP, Evers DJ, Barnes CL, Bignell HR et al (2008) Accurate whole human genome sequencing using reversible terminator chemistry. Nature 456(7218):53–59

    Article  Google Scholar 

  12. Bodenreider O, Stevens R (2006) Bio-ontologies: current trends and future directions. Brief Bioinform 7(3):256–274

    Article  Google Scholar 

  13. Botstein D, White R, Skolnick M, Davis R (1980) Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am J Hum Genet 32(3):314–331

    Google Scholar 

  14. Brazma A, Krestyaninova M, Sarkans U (2006) Standards for systems biology. Nat Rev Genet 7:593–605

    Article  Google Scholar 

  15. Brin S, Page L (1998) The anatomy of a large-scale hypertextual Web search engine. In: Proceedings of the seventh international conference on world wide web 7, Brisbane, vol 30. Elsevier, Amsterdam, pp 107–117

    Google Scholar 

  16. Brockschmidt K (1995) Inside OLE, 2nd edn. Microsoft Press, Redmond

    Google Scholar 

  17. Bry F, Kröger P (2003) A computational biology database digest: data, data analysis, and data management. Distrib Parallel Databases 13(1):7–42

    Article  MATH  Google Scholar 

  18. Codd EF (1970) A relational model of data for large shared data banks. Commun ACM 13(6):377–387

    Article  MATH  Google Scholar 

  19. Cohen-Boulakia S, Leser U (2011) Next generation data integration for life sciences. In: Proceedings of the 2011 IEEE 27th international conference on data engineering (ICDE’11), Hannover. IEEE Computer Society, Los Alamitos, pp 1366–1369

    Google Scholar 

  20. Cuellar A, Lloyd C, Nielsen P, Bullivant D, Nickerson D, Hunter P (2003) An overview of cellmL 1.1, a biological model description language. Simulation 79(12):740–747

    Article  Google Scholar 

  21. Davidson S, Overton C, Buneman P (1995) Challenges in integrating biological data sources. J Comput Biol 2(4):557–572

    Article  Google Scholar 

  22. Day J (2001) The quest for information: a guide to searching the internet. J Contemp Dent Pract 2(4):033–043

    Google Scholar 

  23. Devlin B, Murphy P (1988) An architecture for a business and information system. IBM Syst J 27(1):60–80

    Article  Google Scholar 

  24. Divoli A, Hearst M, Wooldridge MA (2008) Evidence for showing gene/protein name suggestions in bioscience literature search interfaces. In: Pacific symposium on biocomputing, Kohala Coast, vol 13, pp 568–579

    Google Scholar 

  25. Doms A, Schroeder M (2005) GoPubMed: exploring PubMed with the Gene ontology. Nucl Acids Res 33(suppl_2):W783–W786

    Google Scholar 

  26. Dowell R, Jokerst R, Day A, Eddy S, Stein L (2001) The distributed annotation system. BMC Bioinform 2(1):7

    Article  Google Scholar 

  27. Eckerson WW (2002) Data quality and the bottom line: achieving business success through a commitment to high quality data. TDWI report series, The Data Warehousing Institute, Seattle

    Google Scholar 

  28. Efthimiadis EN (2000) Interactive query expansion: a user-based evaluation in a relevance feedback environment. J Am Soc Inf Sci 51(11):989–1003

    Article  Google Scholar 

  29. Elmasri R, Navathe SB (2000) Fundamentals of database systems, 3rd edn. Addison-Wesley, Reading

    Google Scholar 

  30. Etzold T, Harris H, Beaulah S (2003) SRS: an integration platform for databanks and analysis tools in bioinformatics. In: Lacroix Z, Critchlow T (eds) Bioinformatics: managing scientific data. Morgan Kaufmann, San Francisco, pp 109–145

    Chapter  Google Scholar 

  31. Fenyö D (1999) The Biopolymer markup language. Bioinformatics 15(4):339–340

    Article  Google Scholar 

  32. Fernández-Suárez XM, Galperin MY (2013) The 2013 nucleic acids research database issue and the online molecular biology database collection. Nucl Acids Res 41(D1):D1–D7

    Article  Google Scholar 

  33. Geiger K (1995) Inside ODBC: [Der Entwicklerleitfaden zum Industriestandard für Datenbank-Schnittstellen]. Microsoft Press, Unterschleissheim

    Google Scholar 

  34. Gilmour R (2000) Taxonomic markup language: applying XML to systematic data. Bioinformatics 16(4):406–407

    Article  Google Scholar 

  35. Gleeson P, Crook S, Cannon R, Hines M, Billings G, Farinella M, Morse T, Davison A, Ray S, Bhalla U et al (2010) Neuroml: a language for describing data driven models of neurons and networks with a high degree of biological detail. PLoS Comput Biol 6(6):e1000815

    Article  Google Scholar 

  36. Goble C, Stevens R (2008) State of the nation in data integration for bioinformatics. J Biomed Inform 41(5):687–693

    Article  Google Scholar 

  37. Goujon M, Valentin F, Miyar T, McWilliam H, Lopez R (2007) The EB-eye. EMBnetnews 13(4):18–21

    Google Scholar 

  38. Gray J (2007) Jim gray on eScience: a transformed scientific method. Retrieved from http://research.microsoft.com/en-us/collaboration/fourthparadigm/4th_paradigm_book_jim_gray_transcript.pdf

  39. Greifeneder H (2010) Erfolgreiches SuchmaschinenMarketing: Wie Sie bei Google, Yahoo, MSN & Co. ganz nach oben kommen, 2nd edn. Gabler Verlag

    Google Scholar 

  40. Gruber TR (1993) A translation approach to portable ontology specifications. Knowl Acquis 5(2):199–220

    Article  Google Scholar 

  41. Hanisch D, Fundel K, Mevissen HT, Zimmer R, Fluck J (2005) Prominer: rule-based protein and gene entity recognition. BMC Bioinform 6(Suppl_1):S14

    Google Scholar 

  42. Hearst M (2006) Design recommendations for hierarchical faceted search interfaces. In: ACM SIGIR workshop on faceted search, Seattle

    Google Scholar 

  43. Hearst M (2009) Search user interfaces. Cambridge University Press, Cambridge/New York

    Book  Google Scholar 

  44. Henkel R, Endler L, Peters A, Le Novère N, Waltemath D (2010) Ranked retrieval of computational biology models. BMC Bioinform 11(1):423

    Google Scholar 

  45. Hines M, Morse T, Migliore M, Carnevale N, Shepherd G (2004) Modeldb: a database to support computational neuroscience. J Comput Neurosci 17(1):7–11

    Article  Google Scholar 

  46. Hoehndorf R, Dumontier M, Gennari JH, Wimalaratne S, de Bono B, Cook DL, Gkoutos GV (2011) Integrating systems biology models and biomedical ontologies. BMC Syst Biol 5(1):124

    Article  Google Scholar 

  47. Hucka M, Bergmann F, Keating S, Schaff J, Smith L (2010) The systems biology markup language (SBML): language specification for level 3 version. http://sbml.org/Documents/Specifications/SBML_Level_3/Version_1/Core

  48. Ide NC, Loane RF, Demner-Fushman D (2007) Essie: a concept-based search engine for structured biomedical text. J Am Med Inform Assoc 14(3):253–263

    Article  Google Scholar 

  49. Inmon W (2005) Building the data warehouse, 4th edn. Wiley, Indianapolis

    Google Scholar 

  50. Jaiswal1 P, Ware D, Ni J, Chang K, Zhao W, Schmidt S, Pan X, Clark K, Teytelman L, Cartinhour S, Stein L, McCouch S (2002) Gramene: development and integration of trait and gene ontologies for rice. Comparative and Functional Genomics 3(2):132–136

    Google Scholar 

  51. Juty N, Le Novère N, Laibe C (2012) Identifiers.org and miriam registry: community resources to provide persistent identification. Nucl Acids Res 40(D1):D580–D586

    Article  Google Scholar 

  52. Kanz C, Aldebert P, Althorpe N, Baker W, Baldwin A, Bates K, Browne P, van den Broek A, Castro M, Cochrane G, Duggan K, Eberhardt R, Faruque N, Gamble J, Diez FG, Harte N, Kulikova T, Lin Q, Lombard V, Lopez R, Mancuso R, McHale M, Nardone F, Silventoinen V, Sobhany S, Stoehr P, Tuli MA, Tzouvara K, Vaughan R, Wu D, Zhu W, Apweiler R (2005) The EMBL nucleotide sequence database. Nucl Acids Res 33(suppl_1):D29–D33

    Google Scholar 

  53. Kasprzyk A (2011) Biomart: driving a paradigm change in biological data management. Database 2011:bar049

    Article  Google Scholar 

  54. Kimball R (1998) Bringing up supermarts – a step-by-step approach to building a data warehouse from granular data. DBMS and Internet Syst 11(1):47–53

    MathSciNet  Google Scholar 

  55. Kitano H (2002) Systems biology: a brief overview. Science 295:1662–1664

    Article  Google Scholar 

  56. Krallinger M, Valencia A, Hirschman L (2008) Linking genes to literature: text mining, information extraction, and retrieval applications for biology. Genome Biol 9(Suppl 2):S8

    Article  Google Scholar 

  57. Krause F, Uhlendorf J, Lubitz T, Schulz M, Klipp E, Liebermeister W (2010) Annotation and merging of SBML models with semanticsbml. Bioinformatics 26(3):421–422

    Article  Google Scholar 

  58. Lacroix Z, Critchlow T (2003) Bioinformatics: managing scientific data. Morgan Kaufmann, San Francisco

    Google Scholar 

  59. Laibe C (2011) Identifiers. org and miriam registry: perennial identifiers for crossreferencing purposes. Available from Nature Precedings. http://dx.doi.org/10.1038/npre.2011.6479.1

  60. Lange M, Spies K, Bargsten J, Haberhauer G, Klapperstück M, Leps M, Weinel C, Wünschiers R, Weißbach M, Stein J, Scholz U (2010) The LAILAPS search engine: relevance ranking in life science databases. J Integr Bioinform 7(2):e110

    Google Scholar 

  61. Langville AN, Meyer CD (2006) Google’s PageRank and beyond: the science of search engine rankings. Princeton University Press, Princeton

    Google Scholar 

  62. Lassila O, Swick RR, Consortium WWW (1998) resource description framework (RDF) model and syntax specification. http://www.w3.org/1998/10/WD-rdf-syntax-19981008

  63. Lee T, Pouliot Y, Wagner V, Gupta P, Stringer-Calvert D, Tenenbaum J, Karp P (2006) BioWarehouse: a bioinformatics database warehouse toolkit. BMC Bioinform 7(1):170

    Article  Google Scholar 

  64. Le Novère N, Finney A, Hucka M, Bhalla U, Campagne F, Collado-Vides J, Crampin E, Halstead M, Klipp E, Mendes P et al (2005) Minimum information requested in the annotation of biochemical models (MIRIAM). Nat Biotechnol 23(12):1509–1515

    Article  Google Scholar 

  65. Le Novère N, Courtot M, Laibe C (2006) Adding semantics in kinetics models of biochemical pathways. In: Proceedings of the 2nd international symposium on experimental standard conditions of enzyme characterizations, Ruedesheim

    Google Scholar 

  66. Li C, Donizelli M, Rodriguez N, Dharuri H, Endler L, Chelliah V, Li L, He E, Henry A, Stefan M et al (2010) Biomodels database: an enhanced, curated and annotated resource for published quantitative kinetic models. BMC Syst Biol 4(1):92

    Article  Google Scholar 

  67. Lloyd C, Lawson J, Hunter P, Nielsen P (2008) The cellmL model repository. Bioinformatics 24(18):2122–2123

    Article  Google Scholar 

  68. Lu Z (2011) PubMed and beyond: a survey of web tools for searching biomedical literature. Database 2011:baq036

    Article  Google Scholar 

  69. Magrane M, UniProt Consortium (2011) UniProt Knowledgebase: a hub of integrated protein data. Database 2011:bar009

    Google Scholar 

  70. Marchionini G (2006) Exploratory search: from finding to understanding. Commun ACM 49(4):41–46

    Article  Google Scholar 

  71. Marenco L, Tosches N, Crasto C, Shepherd G, Miller P, Nadkarni P (2003) Achieving evolvable web-database bioscience applications using the EAV/CR framework: recent advances. J Am Med Inform Assoc 10(5):444–453

    Article  Google Scholar 

  72. Margulies M, Egholm M, Altman WE, Attiya S, Bader JS, Bemben LA, Berka J, Braverman MS, Chen YJ, Chen Z et al (2005) Genome sequencing in microfabricated high-density picolitre reactors. Nature 437(7057):376–380

    Google Scholar 

  73. Maxam A, Gilbert W (1977) A new method for sequencing DNA. Proc Natl Acad Sci 74(2):560–564

    Article  Google Scholar 

  74. Mehlhorn H, Lange M, Scholz U, Schreiber F (2012) IDPredictor: predict database links in biomedical database. J Integr Bioinform 9(2):e190

    Google Scholar 

  75. Murray-Rust P, Rzepa H (1999) Chemical markup, XML, and the World Wide Web. 1. Basic principles. J Chem Inf Comput Sci 39(6):928–946. http://www.xml-cml.org

  76. Nolin MA, Ansell P, Belleau F, Idehen K, Rigault P, Tourigny N, Roe P, Hogan JM, Dumontier M (2008) Bio2RDF network of linked data. In: Semantic web challenge; international semantic web conference (ISWC 2008), Karlsruhe

    Google Scholar 

  77. O’Connor B, Day A, Cain S, Arnaiz O, Sperling L, Stein L (2008) Gmodweb: a web framework for the generic model organism database. Genome Biol 9(6):R102

    Article  Google Scholar 

  78. Olivier B, Snoep J (2004) Web-based kinetic modelling using JWS online. Bioinformatics 20(13):2143–2144

    Article  Google Scholar 

  79. Pearson W, Lipman D (1988) Improved tools for biological sequence comparison. Proc Natl Acad Sci USA 85:2444–2448

    Article  Google Scholar 

  80. Prud’hommeaux E, Seaborne A (2008) SPARQL query language for RDF. http://www.w3.org/TR/rdf-sparql-query/

  81. Richardson M, Prakash A, Brill E (2006) Beyond pagerank: machine learning for static ranking. In: WWW’06: proceedings of the 15th international conference on World Wide Web, Edinburgh. ACM, New York, pp 707–715

    Google Scholar 

  82. Roos DS (2001) Bioinformatics-trying to swim in a sea of data. Science 291(5507): 1260–1261

    Article  Google Scholar 

  83. Saake G, Heuer A (1999) Datenbanken: Implementierungstechniken, 1st edn. MITP, Bonn

    Google Scholar 

  84. Sanger F, Nicklen S, Coulson AR (1977) DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci 74(12):5463–5467

    Article  Google Scholar 

  85. Schadt E, Linderman M, Sorenson J, Lee L, Nolan G (2010) Computational solutions to large-scale data management and analysis. Nat Rev Genet 11(9):647–657

    Article  Google Scholar 

  86. Schena M, Shalon D, Davis RW, Brown PO (1995) Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science 270(5235):467–470

    Article  Google Scholar 

  87. Schmitt I (1998) Schemaintegration für den Entwurf Föderierter Datenbanken. infix, Sankt Augustin

    Google Scholar 

  88. Schöch V (2001) Die Suchmaschine Google. Seminararbeit, Institut für Informatik, Freie Universität zu Berlin

    Google Scholar 

  89. Schönsleben P (2001) Integrales Informationsmanagement: Informationssysteme für Geschäftsprozesse – Management, Modellierung, Lebenszyklus und Technologie, 2nd edn. Springer, Berlin/Heidelberg

    Book  Google Scholar 

  90. Schuler GD, Epstein JA, Ohkawa H, Kans JA (1996) Entrez: molecular biology database and retrieval system. In: Doolittle RF (ed) Computer methods for macromolecular sequence analysis. Methods in enzymology, vol 266. Academic, San Diego, pp 141–162

    Chapter  Google Scholar 

  91. Schulz M, Krause F, Le Novère N, Klipp E, Liebermeister W (2011) Retrieval, alignment, and clustering of computational models based on semantic annotations. Mol Syst Biol 7(1):512

    Google Scholar 

  92. Shah S, Huang Y, Xu T, Yuen M, Ling J, Ouellette BFF (2005) Atlas – a data warehouse for integrative bioinformatics. BMC Bioinform 6(1):34

    Article  Google Scholar 

  93. Siegel J (1996) CORBA fundamentals and programming. Wiley, New York

    Google Scholar 

  94. Siple MD (1998) The complete guide to Java database programming with JDBC. McGraw-Hill, New York/London

    Google Scholar 

  95. Smedley D, Haider S, Ballester B, Holland R, London D, Thorisson G, Kasprzyk A (2009) BioMart – biological queries made easy. BMC Genomics 10(1):22

    Article  Google Scholar 

  96. Smith B, Ashburner M, Rosse C, Bard J, Bug W, Ceusters W, Goldberg L, Eilbeck K, Ireland A, Mungall C et al (2007) The OBO foundry: coordinated evolution of ontologies to support biomedical data integration. Nat Biotechnol 25(11):1251–1255

    Article  Google Scholar 

  97. Stein L (2010) The case for cloud computing in genome informatics. Genome Biol 11(5):207

    Article  Google Scholar 

  98. Stephens SM, Chen JY, Davidson MG, Thomas S, Trute BM (2005) Oracle database 10 g: a platform for BLAST search and regular expression pattern matching in life sciences. Nucl Acids Res 33(suppl_1):D675–D679

    Google Scholar 

  99. Taylor C, Field D, Sansone S, Aerts J, Apweiler R, Ashburner M, Ball C, Binz P, Bogue M, Booth T et al (2008) Promoting coherent minimum reporting guidelines for biological and biomedical investigations: the MIBBI project. Nat Biotechnol 26(8):889–896

    Article  Google Scholar 

  100. United States National Library of Medicine (2011) Pubmed celebrates its 10th anniversary. http://www.nlm.nih.gov/pubs/techbull/so06/so06_pm_10.html

  101. Valencia A (2002) Search and retrieve: large-scale data generation is becoming increasingly important in biological research. But how good are the tools to make sense of the data? EMBO Rep 3(5):396–400

    Google Scholar 

  102. Waltemath D, Henkel R, Winter F, Wolkenhauer O (2013) Reproducibility of model-based results in systems biology. In: Prokop A, Csukás B (eds) Systems biology: integrative biology and simulation tools. Springer, Dordrecht

    Google Scholar 

  103. Weiner M, Hudson T (2002) Introduction to SNPs: discovery of markers for disease. Biotechniques 32(Supplement):S4–S13

    Google Scholar 

  104. Weise S, Grosse I, Klukas C, Koschützki D, Scholz U, Schreiber F, Junker B (2006) Meta-all: a system for managing metabolic pathway information. BMC Bioinform 7(1):e465

    Article  Google Scholar 

  105. Whetzel PL, Parkinson H, Causton HC, Fan L, Fostel J, Fragoso G, Game L, Heiskanen M, Morrison N, Rocca-Serra P, Sansone SA, Taylor C, White J, Stoeckert CJ (2006) The MGED ontology: a resource for semantics-based description of microarray experiments. Bioinformatics 22(7):866–873

    Article  Google Scholar 

  106. Whetzel P, Noy N, Shah N, Alexander P, Nyulas C, Tudorache T, Musen M (2011) BioPortal: enhanced functionality via new web services from the national center for biomedical ontology to access and use ontologies in software applications. Nucl Acids Res 39(suppl_2):W541–W545

    Google Scholar 

  107. Wiederhold G (1996) Intelligent integration of information – foreword. J Intell Inf Syst 6(2/3):93–98

    Google Scholar 

  108. Wiederhold G (1997) Mediators in the architecture of future information systems. In: Huhns MN, Singh MP (eds) Readings in agents. Morgan Kaufmann, San Francisco, pp 185–196

    Google Scholar 

  109. Yu T, Lloyd C, Nickerson D, Cooling M, Miller A, Garny A, Terkildsen J, Lawson J, Britten R, Hunter P et al (2011) The physiome model repository 2. Bioinformatics 27(5):743–744

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the European Commission within its 7th Framework Programme, under the thematic area “Infrastructures”, contract number 283496, by the BMBF e:bio programme (University of Rostock) and the Leibniz Institute of Plant Genetics and Crop Plant Research (IPK).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Lange .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Lange, M., Henkel, R., Müller, W., Waltemath, D., Weise, S. (2014). Information Retrieval in Life Sciences: A Programmatic Survey. In: Chen, M., Hofestädt, R. (eds) Approaches in Integrative Bioinformatics. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41281-3_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41281-3_3

  • Published:

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41280-6

  • Online ISBN: 978-3-642-41281-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics