Skip to main content

Metamodel Assisted Mixed-Integer Evolution Strategies Based on Kendall Rank Correlation Coefficient

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8206))

Abstract

Although mixed-integer evolution strategies (MIES) have been successfully applied to optimization of mixed-integer problems, they may encounter challenges when fitness evaluations are time consuming. In this paper, we propose to use a radial-basis-function network (RBFN) trained based on the rank correlation coefficient distance metric to assist MIES. For the distance metric of the RBFN, we modified a heterogeneous metric (HEOM) by multiplying the weight for each dimension. Whilst the standard RBFN aims to approximate the fitness accurately, the proposed RBFN tries to rank the individuals (according to their fitness) correctly. Kendall rank correlation Coefficient (RCC) is adopted to measure the degree of rank correlation between the fitness and each variable. The higher the rank similarity with fitness, the greater the weight one variable will be given. Experimental results show the efficacy of the MIES assisted by the RBFN trained by maximizing the RCC performs.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Beyer, H.G., Schwefel, H.P.: Evolution strategies–a comprehensive introduction. Natural Computing 1(1), 3–52 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bäck, T.: Evolutionary algorithms in theory and practice: evolution strategies, evolutionary programming, genetic algorithms. Oxford University Press on Demand (1996)

    Google Scholar 

  3. Emmerich, M., Grötzner, M., Groß, B., Schütz, M.: Mixed-integer evolution strategy for chemical plant optimization with simulators. In: Evolutionary Design and Manufacture, pp. 55–67. Springer (2000)

    Google Scholar 

  4. Emmerich, M., Grötzner, M., Schütz, M.: Design of graph-based evolutionary algorithms: A case study for chemical process networks. Evolutionary Computation 9(3), 329–354 (2001)

    Article  Google Scholar 

  5. Li, R., Emmerich, M., Eggermont, J., Bovenkamp, E.G.: Mixed-integer optimization of coronary vessel image analysis using evolution strategies. In: Proceedings of the 8th Annual Conference on Genetic and Evolutionary Computation, pp. 1645–1652. ACM (2006)

    Google Scholar 

  6. Jin, Y., Olhofer, M., Sendhoff, B.: A framework for evolutionary optimization with approximate fitness functions. IEEE Transactions on Evolutionary Computation 6(5), 481–494 (2002)

    Article  Google Scholar 

  7. Jin, Y.: A comprehensive survey of fitness approximation in evolutionary computation. Soft Computing 9(1), 3–12 (2005)

    Article  Google Scholar 

  8. Li, R., Emmerich, M.T., Eggermont, J., Bovenkamp, E.G., Back, T., Dijkstra, J., Reiber, J.H.: Metamodel-assisted mixed integer evolution strategies and their application to intravascular ultrasound image analysis. In: IEEE Congress on Evolutionary Computation, CEC 2008 (IEEE World Congress on Computational Intelligence), pp. 2764–2771. IEEE (2008)

    Google Scholar 

  9. Engelbrecht, A.P.: Computational intelligence: An introduction. Wiley (2007)

    Google Scholar 

  10. Kendall, M.G., et al.: Rank correlation methods. Rank Correlation Methods (1948)

    Google Scholar 

  11. Schwefel, H.P.: Evolution and optimum seeking. sixth-generation computer technology series (1995)

    Google Scholar 

  12. Schütz, M.: Eine evolutionsstrategie für gemischt-ganzzahlige optimierungsprobleme mit variabler dimension. Master’s thesis, FB Informatik, University Dortmund, Germany (1994)

    Google Scholar 

  13. Rudolph, G.: An evolutionary algorithm for integer programming. In: Davidor, Y., Männer, R., Schwefel, H.-P. (eds.) PPSN 1994. LNCS, vol. 866, pp. 139–148. Springer, Heidelberg (1994)

    Chapter  Google Scholar 

  14. Wilson, D.R., Martinez, T.R.: Improved heterogeneous distance functions. arXiv preprint cs/9701101 (1997)

    Google Scholar 

  15. Haykin, S., Network, N.: A comprehensive foundation. Neural Networks 2 (2004)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Zhuang, L., Tang, K., Jin, Y. (2013). Metamodel Assisted Mixed-Integer Evolution Strategies Based on Kendall Rank Correlation Coefficient. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2013. IDEAL 2013. Lecture Notes in Computer Science, vol 8206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41278-3_45

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41278-3_45

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41277-6

  • Online ISBN: 978-3-642-41278-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics