Skip to main content

SVD Based Graph Regularized Matrix Factorization

  • Conference paper

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 8206))

Abstract

Graph regularized matrix factorization has been proposed by Cai et al. (2011) with an alternate optimization strategy due to the difficulty of close form solution. In this paper, we develop a novel method for graph regularized matrix factorization. This method is based on Singular Value Decomposition (SVD), and its solution is close formed. We carried out experiments on a database for the task of clustering problem to shown the advantage of the proposed method.

This work was supported by the State Key Laboratory for Novel Software Technology (Grant No. KFKT2012B17).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Lee, D., Seung, H.: Learning the parts of objects by non-negative matrix factorization. Nature 401(6755), 788–791 (1999)

    Article  Google Scholar 

  2. Paatero, P., Tapper, U.: Positive matrix factorization: a non-negative factor model with optimal utilization of error estimates of data values. Environmetrics 5(2), 111–126 (1994)

    Article  Google Scholar 

  3. Brunet, J.P., Tamayo, P., Golub, T., Mesirov, J.: Metagenes and molecular pattern discovery using matrix factorization. Proceedings of the National Academy of Sciences of the United States of America 101(12), 4164–4169 (2004)

    Article  Google Scholar 

  4. Xu, W., Liu, X., Gong, Y.: Document clustering based on non-negative matrix factorization. SIGIR Forum (ACM Special Interest Group on Information Retrieval) (SPEC. ISS.), 267–273 (2003)

    Google Scholar 

  5. Bishop, C., Tipping, M.: A hierarchical latent variable model for data visualization. IEEE Transactions on Pattern Analysis and Machine Intelligence 20(3), 281–293 (1998)

    Article  Google Scholar 

  6. Carpentieri, B., Duff, I., Giraud, L.: Sparse pattern selection strategies for robust frobenius-norm minimization preconditioners in electromagnetism. Numerical Linear Algebra with Applications 7(7-8), 667–685 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ma, C., Kamp, Y., Willems, L.F.: Frobenius norm approach to glottal closure detection from the speech signal. IEEE Transactions on Speech and Audio Processing 2(2), 258–265 (1994)

    Article  Google Scholar 

  8. Fung, C.P., Kang, P.C.: Multi-response optimization in friction properties of pbt composites using taguchi method and principle component analysis. Journal of Materials Processing Technology 170(3), 602–610 (2005)

    Article  Google Scholar 

  9. Zhao, S., Zhang, J., Xu, Y.: Monitoring of processes with multiple operating modes through multiple principle component analysis models. Industrial and Engineering Chemistry Research 43(22), 7025–7035 (2004)

    Article  Google Scholar 

  10. Chen, S., Zhu, Y.: Subpattern-based principle component analysis. Pattern Recognition 37(5), 1081–1083 (2004)

    Article  Google Scholar 

  11. Edfors, O., Sandell, M., Van Beek, J.J., Wilson, S., Brjesson, P.: Ofdm channel estimation by singular value decomposition. IEEE Transactions on Communications 46(7), 931–939 (1998)

    Article  Google Scholar 

  12. De Lathauwer, L., De Moor, B., Vandewalle, J.: A multilinear singular value decomposition. SIAM Journal on Matrix Analysis and Applications 21(4), 1253–1278 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  13. Alter, O., Brown, P., Botstein, D.: Singular value decomposition for genome-wide expression data processing and modeling. Proceedings of the National Academy of Sciences of the United States of America 97(18), 10101–10106 (2000)

    Article  Google Scholar 

  14. Virtanen, T.: Monaural sound source separation by nonnegative matrix factorization with temporal continuity and sparseness criteria. IEEE Transactions on Audio, Speech and Language Processing 15(3), 1066–1074 (2007)

    Article  Google Scholar 

  15. Wang, J.J.Y., Wang, X., Gao, X.: Non-negative matrix factorization by maximizing correntropy for cancer clustering. BMC Bioinformatics 14 (2013)

    Google Scholar 

  16. Berry, M., Browne, M., Langville, A., Pauca, V., Plemmons, R.: Algorithms and applications for approximate nonnegative matrix factorization. Computational Statistics and Data Analysis 52(1), 155–173 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  17. Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural Computation 19(10), 2756–2779 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  18. Vilamala, A., Lisboa, P., Ortega-Martorell, S., Vellido, A.: Discriminant convex non-negative matrix factorization for the classification of human brain tumours. Pattern Recognition Letters (2013)

    Google Scholar 

  19. Li, Z., Liu, J., Lu, H.: Structure preserving non-negative matrix factorization for dimensionality reduction. Computer Vision and Image Understanding (2013)

    Google Scholar 

  20. Hu, L., Wu, J., Wang, L.: Linear projective non-negative matrix factorization. ICIC Express Letters 7(8), 2285–2291 (2013)

    Google Scholar 

  21. Lezoray, O., Elmoataz, A., Bougleux, S.: Graph regularization for color image processing. Computer Vision and Image Understanding 107(1-2), 38–55 (2007)

    Article  Google Scholar 

  22. Weinberger, K., Sha, F., Zhu, Q., Saul, L.: Graph laplacian regularization for large-scale semidefinite programming. In: Advances in Neural Information Processing Systems, pp. 1489–1496 (2007)

    Google Scholar 

  23. Zhang, T., Popescul, A., Dom, B.: Linear prediction models with graph regularization for web-page categorization. In: Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, vol. 2006, pp. 821–826 (2006)

    Google Scholar 

  24. Li, J.S., Zhang, X.D.: A new upper bound for eigenvalues of the laplacian matrix of a graph. Linear Algebra and its Applications 265(1-3), 93–100 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  25. Trinajstić, N., Babić, D., Nikolić, S., Plavśić, D., Amić, D., Mihalić, Z.: The laplacian matrix in chemistry. Journal of Chemical Information and Computer Sciences 34(2), 368–376 (1994)

    Article  Google Scholar 

  26. Merris, R.: Laplacian matrices of graphs: a survey. Linear Algebra and its Applications 197-198(C), 143–176 (1994)

    Article  MathSciNet  Google Scholar 

  27. Li, J.B., Pan, J.S., Chu, S.C.: Kernel class-wise locality preserving projection. Information Sciences 178(7), 1825–1835 (2008)

    Article  MATH  Google Scholar 

  28. Chen, S., Zhao, H., Kong, M., Luo, B.: 2D-lpp: A two-dimensional extension of locality preserving projections. Neuro Computing 70(4-6), 912–921 (2007)

    Google Scholar 

  29. Yu, W., Teng, X., Liu, C.: Face recognition using discriminant locality preserving projections. Image and Vision Computing 24(3), 239–248 (2006)

    Article  Google Scholar 

  30. Hu, D., Feng, G., Zhou, Z.: Two-dimensional locality preserving projections (2dlpp) with its application to palmprint recognition. Pattern Recognition 40(1), 339–342 (2007)

    Article  MATH  Google Scholar 

  31. Cai, D., He, X., Han, J., Huang, T.: Graph regularized non negative matrix factorization for data representation. IEEE Transactions on Pattern Analysis and Machine Intelligence 33(8), 1548–1560 (2011)

    Article  Google Scholar 

  32. Wang, J.J.Y., Bensmail, H., Gao, X.: Multiple graph regularized nonnegative matrix factorization. Pattern Recognition 46(10), 2840–2847 (2013)

    Article  Google Scholar 

  33. Du, L., Li, X., Shen, Y.-D.: Cluster ensembles via weighted graph regularized nonnegative matrix factorization. In: Tang, J., King, I., Chen, L., Wang, J. (eds.) ADMA 2011, Part I. LNCS (LNAI), vol. 7120, pp. 215–228. Springer, Heidelberg (2011)

    Chapter  Google Scholar 

  34. Wang, J.Y., Almasri, I., Gao, X.: Adaptive graph regularized nonnegative matrix factorization via feature selection. In: Proceedings of the International Conference on Pattern Recognition, pp. 963–966 (2012)

    Google Scholar 

  35. Rajabi, R., Khodadadzadeh, M., Ghassemian, H.: Graph regularized nonnegative matrix factorization for hyperspectral data unmixing. In: Proceedings of the 2011 7th Iranian Conference on Machine Vision and Image Processing, MVIP 2011 (2011)

    Google Scholar 

  36. Nene, S.A., Nayar, S.K., Murase, H.: Columbia Object Image Library (COIL-20). Technical Report CUCS-005-96 (1996)

    Google Scholar 

  37. Boutsidis, C., Gallopoulos, E.: Svd based initialization: A head start for nonnegative matrix factorization. Pattern Recognition 41(4), 1350–1362 (2008)

    Article  MATH  Google Scholar 

  38. Hong, Z., Zhen, L., Zhao, L.: Non-negative matrix factorization based on double sparsity k-svd. Applied Mechanics and Materials 190-191, 352–355 (2012)

    Article  Google Scholar 

  39. Aharon, M., Elad, M., Bruckstein, A.: K-SVD and its non-negative variant for dictionary design. In: Proceedings of SPIE - The International Society for Optical Engineering, vol. 5914, pp. 1–13 (2005)

    Google Scholar 

  40. Bryt, O., Elad, M.: Compression of facial images using the k-svd algorithm. Journal of Visual Communication and Image Representation 19(4), 270–282 (2008)

    Article  Google Scholar 

  41. Aharon, M., Elad, M., Bruckstein, A.: K-svd: An algorithm for designing overcomplete dictionaries for sparse representation. IEEE Transactions on Signal Processing 54(11), 4311–4322 (2006)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this paper

Cite this paper

Vidar, E.A., Alvindia, S.K. (2013). SVD Based Graph Regularized Matrix Factorization. In: Yin, H., et al. Intelligent Data Engineering and Automated Learning – IDEAL 2013. IDEAL 2013. Lecture Notes in Computer Science, vol 8206. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41278-3_29

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41278-3_29

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41277-6

  • Online ISBN: 978-3-642-41278-3

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics