Skip to main content

Hydrothermal Synthesis

  • Chapter
  • First Online:

Part of the book series: Engineering Materials ((ENG.MAT.))

Abstract

The term hydrothermal was first used by the geologist Sir Roderick Murchison (1792–1871) to describe the action of water at elevated temperature and pressure leading to the formation of various rocks and minerals.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Suchanek, W.L., Riman, R.E.: Hydrothermal synthesis of advanced ceramic powders. Adv. Sci. Technol. 45, 184–193 (2006)

    Article  CAS  Google Scholar 

  2. Eckert, J.O., Hung-Houston, C.C., Gersten, B.L., Lencka, M.M., Riman, R.E.: Kinetics and mechanisms of hydrothermal synthesis of barium titanate. J. Am. Ceram. Soc. 79, 2929–2939 (1996)

    Article  CAS  Google Scholar 

  3. Morey, G.W., Niggli, P.: The hydrothermal formation of silicates, a review. J. Am. Chem. Soc. 35, 1086–1130 (1913)

    Article  CAS  Google Scholar 

  4. Rabenau, A.: The role of hydrothermal synthesis in preparative chemistry. Angew. Chem. 24, 1026–1040 (1985)

    Article  Google Scholar 

  5. Dell’Agli, G., Colantuono, A., Mascolo, G.: The effect of mineralizers on the crystallization of zirconia gel under hydrothermal conditions. Solid State Ionics 123, 87–94 (1999)

    Article  Google Scholar 

  6. Wang, Y., Xu, G., Ren, Z., Wei, X., Weng, W., Du, P., Shen, G., Han, G.: Mineralizer-assisted hydrothermal synthesis and characterization of bifeo3 nanoparticles. J. Am. Ceram. Soc. 90, 2615–2617 (2007)

    Article  CAS  Google Scholar 

  7. Byrappa, K., Yoshimura, M.: Handbook of hydrothermal technology. William Andrew Inc, Norwich (2001)

    Google Scholar 

  8. Thurston, R.H.: A history of the growth of the steam-engine. D Appleton and Company, New York (1886)

    Google Scholar 

  9. Ortiz-Landeros, J., Gómez-Yáñez, C., López-Juárez, R., Dávalos-Velasco, I., Pfeiffer, H.: Synthesis of advanced ceramics by hydrothermal crystallization and modified related methods. J. Adv. Ceram. 1(3), 204–220 (2012)

    Article  CAS  Google Scholar 

  10. Byrappa, K., Adschiri, T.: Progress in crystal growth and characterization of materials. Elsevier, Amsterdam (2007)

    Google Scholar 

  11. Riman, R.E., Suchanek, W.L., Lencka, M.M.: Hydrothermal crystallization of ceramics. Ann. Chim. Sci. Mat. 27: 15–36 (2002)

    Google Scholar 

  12. Yoshimura, M., Byrappa, K.: Hydrothermal processing of materials: past, present and future. J. Mater. Sci. 43, 2085–2103 (2008)

    Article  CAS  Google Scholar 

  13. Schäf, O., Ghobarkar, H., Knauth, P.: Hydrothermal synthesis of nanomaterials. nanostructured materials. Electron. Mater. Sci. Technol. 8, 23–41 (2004)

    Article  Google Scholar 

  14. Uchiyama, H., Shirai, Y., Kozuka, H.: Hydrothermal synthesis of flower-like SnO2 particles consisting of singlecrystalline nanorods through crystal growth in the presence of poly(acrylic acid). RSC Adv. 2, 4839–4843 (2012)

    Article  CAS  Google Scholar 

  15. Zhu, G., Hojamberdiev, M., Liu, P., Peng, J., Zhou, J., Bian, X., Huang, X.: The effects of synthesis parameters on the formation of PbI2 particles under DTAB-assisted hydrothermal process. Mater. Chem. Phys. 131, 64–71 (2011)

    Article  CAS  Google Scholar 

  16. Zhang, W.-M., Chen, M., Jiang, Y.-Q.: Morphology dependence on anions in hydrothermal synthesis of Co3O4. Int. Nano Lett. 3, 44 (2013)

    Article  Google Scholar 

  17. Devers, E., Afanasiev, P., Jouguet, B., Vrinat, M.: Hydrothermal syntheses and catalytic properties of dispersed molybdenum sulfides. Catal. Lett. 82, 13–17 (2002)

    Article  CAS  Google Scholar 

  18. Yin, C.Y., Minakshi, M., Ralph, D.E., Jiang, Z.T., Xie, Z., Guo, H.: Hydrothermal synthesis of cubic α-Fe2O3 microparticles using glycine: Surface characterization, reaction mechanism and electrochemical activity. J. Alloy. Compd. 509, 9821–9825 (2011)

    Article  CAS  Google Scholar 

  19. Souvereyns, B., Elen, K., Dobbelaere, C., Kelchtermans, A., Peys, N., D’Haen, J., Mertens, M., Mullens, S., Van den Rul, H., Meynen, V., Cool, P., Hardy, A., Van Bael, M.K.: Hydrothermal synthesis of a concentrated and stable dispersion of TiO2 nanoparticles. Chem. Eng. J. 223, 135–144 (2013)

    Article  CAS  Google Scholar 

  20. Noh, H.J., Seo, D.S., Kim, H., Lee, J.K.: Synthesis and crystallization of anisotropic shaped ZrO2 nanocrystalline powders by hydrothermal process. Mater. Lett. 57, 2425–2431 (2003)

    Article  CAS  Google Scholar 

  21. Talebian, N., Jafarinezhad, F.: Morphology-controlled synthesis of SnO2 nanostructures using hydrothermal method and their photocatalytic applications. Ceram. Int. 39(7), 8311–8317 (2013)

    Article  CAS  Google Scholar 

  22. Miao, B., Zeng, W., Lin, L., Xu, S.: Characterization and gas-sensing properties of NiO nanowires prepared through hydrothermal method. Physica E 52, 40–45 (2013)

    Article  CAS  Google Scholar 

  23. Ekthammathat, N., Thongtem, T., Phuruangrat, A., Thongtem, S.: Characterization of ZnO flowers of hexagonal prisms with planar and hexagonal pyramid tips grown on Zn substrates by a hydrothermalprocess. Superlattices Microstruct. 53, 195–203 (2013)

    Article  CAS  Google Scholar 

  24. Gelabert, M.C., Laudise, R.A., Riman, R.E.: Phase stability, solubility and hydrothermal crystal growth of PbTiO3. J. Cryst. Growth 197, 195–203 (1999)

    Article  CAS  Google Scholar 

  25. Traianidis, M., Courtois, C., Leriche, A.: Mechanism of PZT crystallisation under hydrothermal conditions Development of a new synthesis route. J. Eur. Ceram. Soc. 20(16), 2713–2720 (2000)

    Article  CAS  Google Scholar 

  26. Sun, W., Li, C., Li, J., Liu, W.: Microwave-hydrothermal synthesis of tetragonal BaTiO3 under various conditions. Mater. Chem. Phys. 97(2–3), 481–487 (2006)

    Article  CAS  Google Scholar 

  27. Lei, F., Yan, B.: Hydrothermal synthesis and luminescence of CaMO4:RE3+ (M = W, Mo; RE = Eu, Tb) submicro-phosphors. J. Solid State Chem. 181(4), 855–862 (2008)

    Article  CAS  Google Scholar 

  28. Habashi F (2003) Extractive metallurgy of aluminum. In: Totten, G.E., Mackenzie D.S., (eds.) Handbook of aluminum: alloy production and materials manufacturing, CRC Press

    Google Scholar 

  29. Deng, Y., Yang, Q., Lu, G., Hu, W.: Synthesis of γ-Al2O3 nanowires through a boehmite precursor route. Ceram. Int. 36, 1773–1777 (2010)

    Article  CAS  Google Scholar 

  30. Sharma, P.K., Jilavi, M.H., Burgard, D., Nass, R., Schmidt, H.: Hydrothermal synthesis of nanosize alpha-Al2O3 from seeded aluminum hydroxide. J. Am. Ceram. Soc. 81, 2732–2734 (1998)

    Article  CAS  Google Scholar 

  31. Lu, C.L., Lv, J.G., Xu, L., Guo, X.F., Hou, W.H., Hu, Y., Huang, H.: Crystalline nanotubes of γ-AlOOH and γ-Al2O3: hydrothermal synthesis, formation mechanism and catalytic performance. Nanotechnology 20, 1–9 (2009)

    Google Scholar 

  32. Kim, T., Li, H., Lian, J., Jin, H., Ma, J., Duan, X., Yao, G., Zheng, W.: Ionic liquid-assisted hydrothermal synthesis of γ-Al2O3 hierarchical nanostructures. Cryst. Res. Technol. 45, 767–770 (2010)

    Article  CAS  Google Scholar 

  33. Yang, Q.: The reaction conditions influence on hydrothermal synthesis of boehmite nanorods. Inorg. Mater. 46, 953–958 (2010)

    Article  CAS  Google Scholar 

  34. Xu, J., Chen, Y., Li, Y., Shen, J.: Gas sensing properties of ZnO nanorods prepared by hydrothermal method. J. Mater. Sci. 40, 2919–2921 (2005)

    Article  CAS  Google Scholar 

  35. Pearton, S.J., Lim, W.T., Wright, J.S., Tien, L.C., Kim, H.S., Norton, D.P., Wang, H.T., Kang, B.S., Ren, F., Jun, J., Lin, J., Osinsky, A.: ZnO and related materials for sensors and light-emitting diodes. J. Electron. Mater. 37, 1426–1432 (2008)

    Article  CAS  Google Scholar 

  36. Rani, S., Suri, P., Shishodia, P.K., Mehra, R.M.: Synthesis of nanocrystalline ZnO powder via sol-gel route for dye-sensitized solar cells. Solar Energy Mater Solar Cells 92, 1639–1645 (2008)

    Article  CAS  Google Scholar 

  37. Barreca, D., Bekermann, D., Comini, E., Devi, A., Fischer, R.A., Gasparotto, A., Maccato, C., Sberveglieri, G., Tondello, E.: 1D ZnO nano-assemblies by plasma-CVD as chemical sensors for flammable and toxic gases. Sens. Actuators, B 149, 1–7 (2010)

    Article  CAS  Google Scholar 

  38. Cao, X., Ning, W., Li, L.D., Guo, L.: Synthesis and characterization of waxberry-like microstructures ZnO for biosensors. Sens. Actuators, B 129, 268–273 (2008)

    Article  Google Scholar 

  39. Yamabi, S., Imai, H.: Growth conditions for wurtzite zinc oxide films in aqueous solutions. J. Mater. Chem. 12(12), 3773–3778 (2002)

    Article  CAS  Google Scholar 

  40. Vayssieres, L.: Growth of arrayed nanorods and nanowires of ZnO fromaqueous solutions. Adv. Mater. 15(5), 464–466 (2003)

    Article  CAS  Google Scholar 

  41. Golić, D.L., Branković, G., Nešić, M.P., Vojisavljević, K., Rečnik, A., Daneu, N., Bernik, S., Šćepanović, M., Poleti, D., Branković, Z.: Structural characterization of self-assembled ZnO nanoparticles obtained by the sol-gel method from Zn(CH3COO)2.2H2O. Nanotechnology 22, 1–9 (2011)

    Google Scholar 

  42. Baruah, S., Dutta, J.: Hydrothermal growth of ZnO Nanostructures. Sci. Technol. Adv. Mater 10, 1–18 (2009)

    Article  Google Scholar 

  43. Nicholas, N.J., Franks, G.V., Ducker, W.A.: The mechanism for hydrothermal growth of zinc oxide. Cryst. Eng. Comm. 14, 1232–1240 (2012)

    Article  CAS  Google Scholar 

  44. Choi, K.O., Yoon, S.H., Kim, W.S., Lee, K.H., Yang, C.M., Han, J.H., Kang, C.J., Choi, Y.J., Yoon, T.S.: Morphological dependence of hydrothermally synthesized ZnO nanowires on synthesis temperature and molar concentration. Phys. Status Solidi A 210(7), 1448–1453 (2013)

    Article  CAS  Google Scholar 

  45. Aneesh, P.M., Jayaraj, M.K.: Red luminescence from hydrothermally synthesized Eu-doped ZnO nanoparticles under visible excitation. Bull. Mater. Sci. 33, 227–231 (2010)

    Article  CAS  Google Scholar 

  46. Liu, B., Chun, H.: Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm. J. Am. Chem. Soc. 125, 4430–4431 (2003)

    Article  CAS  Google Scholar 

  47. Huang, J., Xia, C., Cao, L., Zeng, X.: Facile microwave hydrothermal synthesis of zinc oxide one-dimensional nanostructure with three-dimensional morphology. Mater. Sci. Eng., B 150, 187–193 (2008)

    Article  CAS  Google Scholar 

  48. Dhandapani, P., Maruthamuthu, S., Rajagopal, G.: Bio-mediated synthesis of TiO2 nanoparticles and its photocatalytic effect on aquatic biofilm. J. Photochem. Photobiol., B 110, 43–49 (2012)

    Article  CAS  Google Scholar 

  49. Wang, M.Q., Yan, J., Cui, H.P., Du, S.G.: Low temperature preparation and characterization of TiO2 nanoparticles coated glass beads by heterogeneous nucleation method. Mater. Charact. 76, 39–47 (2013)

    Article  CAS  Google Scholar 

  50. Ghasemi, S., Setayesh, S.R., Habibi-Yangjeh, A., Hormozi-Nezhad, M.R., Gholami, M.R.: Assembly of CeO2–TiO2 nanoparticles prepared in room temperature ionic liquid on graphene nanosheets for photocatalytic degradation of pollutants. J. Hazard. Mater. 199–200, 170–178 (2012)

    Article  Google Scholar 

  51. Shen, C., Wang, Y.J., Xu, J.H., Luo, G.S.: Facile synthesis and photocatalytic properties of TiO2 nanoparticles supported on porous glass beads. Chem. Eng. J. 209, 478–485 (2012)

    Article  CAS  Google Scholar 

  52. Tomita, K., Petrykin, V., Kobayashi, M., Shiro, M., Yoshimura, M., Kakihana, M.: A water soluble titanium complex for the selective synthesis of nanocrystalline brookite, rutile, and anatase by a hydrothermal method. Angew. Chem. Int. Ed. 45, 2378–2381 (2006)

    Article  CAS  Google Scholar 

  53. Nian, J.N., Teng, H.: Hydrothermal synthesis of single-crystalline anatase TiO2 nanorods with nanotubes as the precursor. J Phys Chem B 110, 4193–4198 (2006)

    Article  CAS  Google Scholar 

  54. Kim, D.S., Kwak, S.Y.: The hydrothermal synthesis of mesoporous TiO2 with high crystallinity, thermal stability, large surface area, and enhanced photocatalytic activity. Appl. Catal. A 323, 110–118 (2007)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Annelise Kopp Alves .

Rights and permissions

Reprints and permissions

Copyright information

© 2013 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Kopp Alves, A., Bergmann, C.P., Berutti, F.A. (2013). Hydrothermal Synthesis. In: Novel Synthesis and Characterization of Nanostructured Materials. Engineering Materials. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41275-2_6

Download citation

Publish with us

Policies and ethics