Skip to main content

Cooperativity of hydrogen and halogen bond interactions

  • Regular Article
  • Chapter
  • First Online:
8th Congress on Electronic Structure: Principles and Applications (ESPA 2012)

Part of the book series: Highlights in Theoretical Chemistry ((HITC,volume 5))

Abstract

The cooperativity effects in the Cl-....HCCH...HF, Cl-...ClCCH...HF and F-...ClCCH...HF complexes are analyzed here. The results show that the formation of the hydrogen and halogen bonds is ruled by the same mechanisms and that the cooperativity enhances these interactions. The MP2(full)/6-311 7++G(d,p) calculations were performed for the above triads and the corresponding sub-units; dyads linked by the hydrogen or halogen bonds and monomers. The NEDA scheme of the decomposition of the interaction energy was applied here. It was found that for the halogen bonded systems, the most important is the polarization term of the energy of interaction while for the hydrogen bonds the charge transfer interaction energy and next the electrostatic contribution. The interaction between orbitals is also analyzed here in terms of the Natural Bond Orbitals method.

Published as part of the special collection of articles derived from the 8th Congress on Electronic Structure: Principles and Applications (ESPA 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Jeffrey GA, Saenger W (1991) Hydrogen bonding in biological structures. Springer, Berlin

    Book  Google Scholar 

  2. Jeffrey GA (1997) An introduction to hydrogen bonding. Oxford University Press, New York

    Google Scholar 

  3. Desiraju GR, Steiner T (1999) The weak hydrogen bond in structural chemistry and biology. Oxford University Press, New York

    Google Scholar 

  4. Grabowski SJ (2006) Hydrogen bonding—new insights. Vol 3 of the series: challenges and advances in computational chemistry and physics. Leszczynski J (ed) Springer, Dordrecht

    Google Scholar 

  5. Alkorta I, Rozas I, Elguero J (1998) Chem Soc Rev 27:163–170

    Article  CAS  Google Scholar 

  6. Rozas I, Alkorta I, Elguero J (1997) J Phys Chem A 101:4236– 4244

    Article  CAS  Google Scholar 

  7. Cotton FA, Matonic JH, Murillo CA (1998) J Am Chem Soc 120:6047–6052

    Article  CAS  Google Scholar 

  8. Grabowski SJ, Sokalski WA, Leszczynski J (2006) Chem Phys Lett 422:334–339

    Article  CAS  Google Scholar 

  9. Peris E, Lee JC Jr, Rambo J, Eisenstein O, Crabtree RH (1995) J Am Chem Soc 117:3485–3491

    Article  CAS  Google Scholar 

  10. Wessel J, Lee JC Jr, Peris E, Yap GPA, Fortin JB, Ricci JS, Sini G, Albinati A, Koetzle TF, Eisenstein O, Rheingold AL, Crabtree RH (1995) Angew Chem Int Ed Engl 34:2507–2509

    Article  CAS  Google Scholar 

  11. Crabtree RH, Siegbahn PEM, Eisenstein O, Rheingold AL, Koetzle TF (1996) Acc Chem Res 29:348–354

    Article  CAS  Google Scholar 

  12. Bakhmutow VI (2008) Dihydrogen bonds. John Wiley, New Jersey

    Book  Google Scholar 

  13. Metrangolo P, Resnati G (2001) Chem Eur J 7:2511–2519

    Article  CAS  Google Scholar 

  14. Formigué M, Batail P (2004) Chem Rev 104:5379–5418

    Article  Google Scholar 

  15. Zordan F, Brammer L, Sherwood P (2005) J Am Chem Soc 127:5979–5989

    Article  CAS  Google Scholar 

  16. Clark T, Hennemann M, Murray J, Politzer P (2007) J Mol Model 13:291–296

    Article  CAS  Google Scholar 

  17. Murray JS, Riley KE, Politzer P, Clark T (2010) Aust J Chem 63:1598–1607

    Article  CAS  Google Scholar 

  18. Politzer P, Murray JS, Clark T. Phys Chem Chem Phys 12: 7748–7757

    Google Scholar 

  19. Weinhold F, Landis C (2005) Valency and bonding, a natural bond orbital donor—acceptor perspective. Cambridge University Press, Cambridge

    Book  Google Scholar 

  20. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88:899–926

    Article  CAS  Google Scholar 

  21. Weinhold F (1997) J Mol Struct (Theochem) 398–399:181–197

    Article  Google Scholar 

  22. Alabugin IV, Manoharan M, Peabody S, Weinhold F (2003) J Am Chem Soc 125:5973–5987

    Article  CAS  Google Scholar 

  23. Bent HA (1961) Chem Rev 61:275–311

    Article  CAS  Google Scholar 

  24. Grabowski SJ (2011) J Phys Chem A 115:12340–12347

    Article  CAS  Google Scholar 

  25. Grabowski SJ (2012) J Phys Chem A 116:1838–1845

    Article  CAS  Google Scholar 

  26. Garau C, Quiñonero D, Frontera A, Ballester P, Costa A, Deyà PM (2005) J Phys Chem 109:9341–9345

    Article  CAS  Google Scholar 

  27. Frontera A, Quiñonero D, Garau C, Costa A, Ballester P, Deyà PM (2006) J Phys Chem A 110:9307–9309

    Article  CAS  Google Scholar 

  28. Quiñonero D, Frontera A, Garau C, Ballester P, Costa A, Deyà PM (2006) Chem Phys Chem 7:2487–2491

    Article  Google Scholar 

  29. Frontera A, Quiñonero D, Costa A, Ballester P, Deyà PM (2007) New J Chem 31:556–560

    Article  CAS  Google Scholar 

  30. Hunt SW, Higgins KJ, Craddock MB, Brauer CS, Leopold KR (2003) J Am Chem Soc 125:13850–13860

    Article  CAS  Google Scholar 

  31. Parra RD, Bulusu S, Zeng XC (2005) J Chem Phys 122:184325

    Article  Google Scholar 

  32. Kobko N, Dannenberg JJ (2003) J Phys Chem A 107:6688–6697

    Article  CAS  Google Scholar 

  33. Parra RD, Ohlssen J (2008) J Phys Chem A 112:3492–3997

    Article  CAS  Google Scholar 

  34. Araújo RCMU, Soares VM, Oliveira BG, Lopes KC, Ventura E, DoMonte SA, Santana OL, Carvalho AB, Ramos MN (2006) Int J Quantum Chem 106:2714–2722

    Article  Google Scholar 

  35. Ziólkowski M, Grabowski SJ, Leszczynski J (2006) J Phys Chem A 110:6514–6521

    Article  Google Scholar 

  36. Zhao Q, Feng D, Hao J (2011) J Mol Mod 17:2817–2823

    Article  CAS  Google Scholar 

  37. Solimannejad M, Malekani M, Alkorta I (2011) Mol Phys 109:1641–1648

    Article  CAS  Google Scholar 

  38. Solimannejad M, Malekani M (2010) J Phys Chem A 114:12106–12111

    Article  CAS  Google Scholar 

  39. Grabowski SJ, Bilewicz E (2006) Chem Phys Lett 427:51–55

    Article  CAS  Google Scholar 

  40. Alkorta I, Blanco F, Deyà PM, Elguero J, Estarellas C, Frontera A, Quiñonero D (2010) Theor Chem Acc 126:1–14

    Article  CAS  Google Scholar 

  41. Frisch MJ, Trucks GW, Schlegel HB et al (2009) Gaussian 09, Revision A.02, Inc., Wallingford

    Google Scholar 

  42. Read WG, Flygare WH (1982) J Chem Phys 76:2238–2246

    Article  CAS  Google Scholar 

  43. Allen FH, Davies JE, Galloy JE, Johnson JJ, Kennard O, Macrave CF, Mitchel EM, Smith JM, Watson DG (1991) J Chem Inf Comput Sci 31:187–204

    Article  CAS  Google Scholar 

  44. Ghassemzadeh M, Harms K, Dehnicke K (1996) Chem Ber 129:115–120

    Article  CAS  Google Scholar 

  45. Yamamoto HM, Maeda R, Yamaura JI, Kato R (2001) J Mater Chem 11:1034–1041

    Article  CAS  Google Scholar 

  46. Grabowski SJ (2006) Annu Rep Prog Chem Sect C 102:131–165

    Article  CAS  Google Scholar 

  47. Boys SF, Bernardi F (1979) Mol Phys 19:553–566

    Article  Google Scholar 

  48. Salvador P, Szczęśniak MM (2003) J Chem Phys 118:537–549

    Article  CAS  Google Scholar 

  49. Glendening ED, Streitwieser A Jr (1994) J Chem Phys 100:2900–2909

    Article  CAS  Google Scholar 

  50. Schenter GK, Glendening ED (1996) J Phys Chem 100:17152– 17156

    Article  CAS  Google Scholar 

  51. Glendening ED (1996) J Am Chem Soc 118:2473–2482

    Article  CAS  Google Scholar 

  52. Glendening ED (2005) J Phys Chem A 109:11936–11940

    Article  CAS  Google Scholar 

  53. NBO 5.0. Glendening ED, Badenhoop JK, Reed AE, Carpenter JE, Bohmann JA, Morales CM, Weinhold F (2001). Theoretical Chemistry Institute, University of Wisconsin, Madison

    Google Scholar 

  54. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su SJ, Windus TL, Dupuis M, Montgomery JA (1993) J Comput Chem 14:1347– 1363

    Article  CAS  Google Scholar 

  55. Sobczyk L, Grabowski SJ, Krygowski TM (2005) Chem Rev 105:3513–3560

    Article  CAS  Google Scholar 

  56. Grabowski SJ (2011) Chem Rev 11:2597–2625

    Article  Google Scholar 

  57. Lipkowski P, Grabowski SJ, Leszczynski J (2006) J Phys Chem A 110:10296–10302

    Article  CAS  Google Scholar 

  58. Popelier P (2000) Atoms in molecules. An introduction. Prentice Hall, Pearson Education Limited, Harlow UK

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sławomir J. Grabowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Grabowski, S.J. (2014). Cooperativity of hydrogen and halogen bond interactions. In: Novoa, J., Ruiz López, M. (eds) 8th Congress on Electronic Structure: Principles and Applications (ESPA 2012). Highlights in Theoretical Chemistry, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41272-1_8

Download citation

Publish with us

Policies and ethics