Skip to main content

Isodesmic reaction for pK a calculations of common organic molecules

  • Regular Article
  • Chapter
  • First Online:
Book cover 8th Congress on Electronic Structure: Principles and Applications (ESPA 2012)

Part of the book series: Highlights in Theoretical Chemistry ((HITC,volume 5))

Abstract

Three quantum chemistry methods (B3LYP, M05-2X and CBS-4B3*) have been used, in combination with SMD and CPCM continuum solvent models, to calculate the aqueous pKa values of common organic compounds (aliphatic alcohols, carboxylic acids, amines, phenols, benzoic acids and pyridines) by using an isodesmic reaction. Good precision is found for all the studied functional groups, resulting mean absolute deviations of 0.5–1 pKa units (equivalent to the best results obtained with thermodynamic cycles). It is worthy to note that no explicit water molecules were needed with the isodesmic reaction. In addition, the quality of the results is not strongly dependent on the combination of quantum chemistry method, solvent model and reference species. Therefore, the isodesmic reaction could be successfully used when dealing with gas-phase unstable species, with species that undergo large conformational changes between gas-phase and solution-phase or other difficult cases for the thermodynamic cycles.

Published as part of the special collection of articles derived from the 8th Congress on Electronic Structure: Principles and Applications (ESPA 2012).

Electronic supplementary material The online version of this article (doi:10.1007/s00214-012-1310-z) contains supplementary material, which is available to authorized users.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ho J, Coote ML (2010) A universal approach for continuum solvent pK a calculations: are we there yet? Theor Chem Acc 125:3–21

    Article  CAS  Google Scholar 

  2. Ho J, Klamt A, Coote ML (2010) Comment on the correct use of continuum solvent models. J Phys Chem A 114:13442–13444

    Article  CAS  Google Scholar 

  3. Casasnovas R, Fernández D, Ortega-Castro J, Frau J, Donoso J, Muñoz F (2011) Avoiding gas-phase calculations in theoretical pKa predictions. Theor Chem Acc 130:1–13

    Article  CAS  Google Scholar 

  4. Takano Y, Houk KN (2005) Benchmarking the conductor-like polarizable continuum model (CPCM) for aqueous solvation free energies of neutral and ionic organic molecules. J Chem Theory Comput 1:70–77

    Article  Google Scholar 

  5. Cramer CJ, Truhlar DG (2008) A universal approach to solvation modeling. Acc Chem Res 41:760–768

    Article  CAS  Google Scholar 

  6. Wang L, Heard DE, Pilling MJ, Seakins P (2008) A Gaussian-3X prediction on the enthalpies of formation of chlorinated phenols and Dibenzo-p-dioxins. J Phys Chem A 112:1832–1840

    Article  CAS  Google Scholar 

  7. Li GS, Ruiz-López MF, Maigret B (1997) Ab initio study of 4(5)- Methylimidazole in aqueous solution. J Phys Chem A 101:7885– 7892

    Article  CAS  Google Scholar 

  8. Derbel N, Clarot I, Mourer M, Regnouf-de-Vains J, Ruiz-López MF (2012) Intramolecular interactions versus hydration effects on p-Guanidinoethyl-phenol structure and pKa values. J Phys Chem A 116:9404–9411

    Article  CAS  Google Scholar 

  9. Govender KK, Cukrowski I (2009) Density functional theory in prediction of four stepwise protonation constants for nitrilotripropanoic acid (NTPA). J Phys Chem A 113:3639–3647

    Article  CAS  Google Scholar 

  10. Govender KK, Cukrowski I (2010) Density functional theory and isodesmic reaction based prediction of four stepwise protonation constants, as log KH (n), for nitrilotriacetic acid. the importance of a kind and protonated form of a reference molecule used. J Phys Chem A 114:1868–1878

    Article  CAS  Google Scholar 

  11. Casasnovas R, Frau J, Ortega-Castro J, Salvá A, Donoso J, Muñoz F (2009) Absolute and relative pKa calculations of mono and diprotic pyridines by quantum methods. J Mol Struct Theochem 912:5–12

    Article  CAS  Google Scholar 

  12. Gao DQ, Svoronos P, Wong PK, Maddalena D, Hwang J, Walker H (2005) pKa of acetate in water: a computational study. J Phys Chem A 109:10776–10785

    Article  CAS  Google Scholar 

  13. Ho J, Coote ML (2009) pKa calculation of some biologically important carbon acids—an assessment of contemporary theoretical procedures. J Chem Theory Comput 5:295–306

    Article  CAS  Google Scholar 

  14. Barone V, Cossi M (1998) Quantum calculation of molecular energies and energy gradients in solution by a conductor solvent model. J Phys Chem A 102:1995–2001

    Article  CAS  Google Scholar 

  15. Barone V, Cossi M, Tomassi J (1998) Geometry optimization of molecular structures in solution by the polarizable continuum model. J Comput Chem 19:404–417

    Article  CAS  Google Scholar 

  16. Cossi M, Rega M, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681

    Article  CAS  Google Scholar 

  17. Marenich AV, Cramer CJ, Truhlar DG (2009) Universal solvation model based on solute electron density and on a continuum model of the solvent defined by the bulk dielectric constant and atomic surface tensions. J Phys Chem B 113:6378–6396

    Article  CAS  Google Scholar 

  18. Marenich AV, Cramer CJ, Truhlar DG (2009) Performance of SM6, SM8, and SMD on the SAMPL1 test set for the prediction of small-molecule solvation free energies. J Phys Chem B 113:4538–4543

    Article  CAS  Google Scholar 

  19. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98:5648–5652

    CAS  Google Scholar 

  20. Zhao Y, Schultz NE, Truhlar DG (2006) Design of density functionals by combining the method of constraint satisfaction with parametrization for thermochemistry, thermochemical kinetics, and noncovalent interactions. J Chem Theory Comput 2:364–382

    Article  Google Scholar 

  21. Zhao Y, Truhlar DG (2008) Functionals with broad applicability in chemistry. Acc Chem Res 41:157–167

    Article  CAS  Google Scholar 

  22. Casasnovas R, Frau J, Ortega-Castro J, Salvá A, Donoso J, Muñoz F (2010) Simplification of the CBS-QB3 method for predicting gas-phase deprotonation free energies. Int J Quantum Chem 110:323–330

    Article  CAS  Google Scholar 

  23. Gaussian 03, Revision E.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Montgomery Jr JA, Vreven T, Kudin KN, Burant JC, Millam JM, Iyengar SS, Tomasi J, Barone V, Mennucci B, Cossi M, Scalmani G, Rega N, Petersson GA, Nakatsuji H, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Klene M, Li X, Knox JE, Hratchian HP, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Ayala PY, Morokuma K, Voth GA, Salvador P, Dannenberg JJ, Zakrzewski VG, Dapprich S, Daniels AD, Strain MC, Farkas O, Malick D K, Rabuck AD, Raghavachari K, Foresman JB, Ortiz JV, Cui Q, Baboul AG, Clifford S, Cioslowski J, Stefanov BB, Liu G, Liashenko A, Piskorz P, Komaromi I, Martin RL, Fox D J, Keith T, Al-Laham MA, Peng CY, Nanayakkara A, Challacombe M, Gill P MW, Johnson B, Chen W, Wong MW, Gonzalez C, Pople JA, Gaussian, Inc., Wallingford CT, (2004)

    Google Scholar 

  24. Gaussian 09, Revision B.01, Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö , Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, Gaussian, Inc., Wallingford CT (2009)

    Google Scholar 

  25. Pliego JR, Riveros JM (2002) Theoretical calculation of pKa using the cluster-continuum model. J Phys Chem A 106:7434– 7439

    Article  CAS  Google Scholar 

  26. Namazian M, Heidary H (2003) Ab initio calculations of pKa values of some organic acids in aqueous solution. J Mol Struct- Theochem 620:257–263

    Article  CAS  Google Scholar 

  27. Silva CO, da Silva EC, Nascimento MAC (2000) Ab initio calculations of absolute pKa values in aqueous solution II. Aliphatic alcohols, thiols, and halogenated carboxylic acids. J Phys Chem A 104:2402–2409

    Article  CAS  Google Scholar 

  28. Kelly CP, Cramer CJ, Truhlar DG (2006) Adding explicit solvent molecules to continuum solvent calculations for the calculation of aqueous acid dissociation constants. J Phys Chem A 110: 2493–2499

    Article  CAS  Google Scholar 

  29. Liptak MD, Shields GC (2001) Accurate pKa calculations for carboxylic acids using complete basis set and Gaussian-n models combined with CPCM continuum solvation methods. J Am Chem Soc 123:7314–7319

    Article  CAS  Google Scholar 

  30. Liptak MD, Shields GC (2001) Experimentation with different thermodynamic cycles used for pKa calculations on carboxylic acids using complete basis set and gaussian-n models combined with CPCM continuum solvation methods. Int J Quantum Chem 85:727–741

    Article  CAS  Google Scholar 

  31. Toth AM, Liptak MD, Phillips DL, Shields GC (2001) Accurate relative pKa calculations for carboxylic acids using complete basis set and Gaussian-n models combined with continuum solvation methods. J Chem Phys 114:4595–4606

    Article  CAS  Google Scholar 

  32. Namazian M, Halvani S (2006) Calculations of pKa values of carboxylic acids in aqueous solution using density functional theory. J Chem Thermodyn 38:1495–1502

    Article  CAS  Google Scholar 

  33. Namazian M, Halvani S, Noorbala MR (2004) Density functional theory response to the calculations of pKa values of some carboxylic acids in aqueous solution. J Mol Struct Theochem 711:13–18

    Article  CAS  Google Scholar 

  34. Schuurmann G, Cossi M, Barone V, Tomasi J (1998) Prediction of the pKa of carboxylic acids using the ab initio continuumsolvation model PCM-UAHF. J Phys Chem A 102:6706–6712

    Article  Google Scholar 

  35. da Silva CO, da Silva EC, Nascimento MAC (1999) Ab initio calculations of absolute pKa values in aqueous solution I. Carboxylic acids. J Phys Chem A 103:11194–11199

    Article  Google Scholar 

  36. Saracino GAA, Improta R, Barone V (2003) Absolute pKa determination for carboxylic acids using density functional theory and the polarizable continuum model. Chem Phys Lett 373: 411–415

    Article  CAS  Google Scholar 

  37. Schmidt am Busch M, Knapp EW (2004) Accurate pKa determination for a heterogeneous group of organic molecules. Chem Phys Chem 5:1513–1522

    Google Scholar 

  38. Jia Z, Du D, Zhou Z, Zhang A, Hou R (2007) Accurate pKa determinations for some organic acids using an extended cluster method. Chem Phys Lett 439:374–380

    Article  CAS  Google Scholar 

  39. da Silva EF, Svendsen HF (2003) Prediction of the pKa values of amines using ab initio methods and free-energy perturbations. Ind Eng Chem Res 42:4414–4421

    Article  Google Scholar 

  40. Eckert F, Klamt A (2006) Accurate prediction of basicity in aqueous solution with COSMO-RS. J Comput Chem 27:11–19

    Article  CAS  Google Scholar 

  41. Blanco SE, Ferretti FH (2005) Calculation of ionization constants of methylamines in aqueous solution. J Mol Struc Theochem 722: 197–202

    Article  CAS  Google Scholar 

  42. Behjatmanesh-Ardakani R, Karimi MA, Ebady A (2009) Cavity shape effect on pKa prediction of small amines. J Mol Struc Theochem 910:99–103

    Article  CAS  Google Scholar 

  43. Khalili F, Henni A, East ALL (2009) Entropy contributions in pKa computation: application to alkanolamines and piperazines. J Mol Struc Theochem 916:1–9

    Article  CAS  Google Scholar 

  44. Liptak MD, Gross KC, Seybold PG, Feldgus S, Shields GC (2002) Absolute pKa determinations for substituted phenols. J Am Chem Soc 124:6421–6427

    Article  CAS  Google Scholar 

  45. Rebollar-Zepeda AM, Campos-Hernández T, Ramirez MT, Rojas- Hernández A, Galano A (2011) Searching for computational strategies to accurately predict pKas of large phenolic derivatives. J Chem Theory Comput 7:2528–2538

    Article  CAS  Google Scholar 

  46. Caballero NA, Melendez FJ, Muñoz-Caro C, Niño A (2006) Theoretical prediction of relative and absolute pKa values of aminopyridines. Biophys Chem 124:155–160

    Article  CAS  Google Scholar 

  47. Chen IJ, MacKerell AD (2000) Computation of the influence of chemical substitution on the pKa of pyridine using semiempirical and ab initio methods. Theo Chem Acc 103:483–494

    Article  CAS  Google Scholar 

  48. Guven A (2005) Acidity study on 3-substituted pyridines. Int J Mol Sci 6:257–275

    Article  CAS  Google Scholar 

  49. Blanco SE, Ferretti FH (2005) Calculation of acidity constants of pyridines in aqueous solution. Chem Phys Lett 403:400–404

    Article  CAS  Google Scholar 

  50. Ö gretir C, Tay NF, Ö zturk II (2007) A theoretical study on protonation of some halogen substituted pyridine derivatives. J Mol Graph Model 26:740–747

    Google Scholar 

  51. Rebollar-Zepeda AM, Galano A (2012) First principles calculations of pka values of amines in aqueous solution: application to neurotransmitters. Int J Quantum Chem 112:3449–3460

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Frau .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Sastre, S., Casasnovas, R., Muñoz, F., Frau, J. (2014). Isodesmic reaction for pK a calculations of common organic molecules. In: Novoa, J., Ruiz López, M. (eds) 8th Congress on Electronic Structure: Principles and Applications (ESPA 2012). Highlights in Theoretical Chemistry, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41272-1_7

Download citation

Publish with us

Policies and ethics