Skip to main content

Exohedral interaction in cationic lithium metallofullerenes

  • Regular Article
  • Chapter
  • First Online:
8th Congress on Electronic Structure: Principles and Applications (ESPA 2012)

Part of the book series: Highlights in Theoretical Chemistry ((HITC,volume 5))

  • 725 Accesses

Abstract

We present a density functional theory study on the exohedral interaction between a singly positively charged lithium atom and fullerenes: Li+–C n , n= 70, 60 and 50. We have found that the interaction is of electrostatic nature: the cation polarizes the π electronic cloud of the fullerene in an ion-induced dipole attraction. We show that these systems present a shallow potential energy surface where the local minima correspond to the interaction of the cation on top of one pentagonal or one hexagonal face of the fullerene and transition states connect them through a movement of the cation over a C–C bond. The type of interaction and the shape of the potential energy surface give rise to the so-called planetary systems, where the alkali cation is revolving around the carbon cage in orbits. The studied systems present several pathways that are more likely than others to behave as potentially favorable orbits.

Published as part of the special collection of articles derived from the 8th Congress on Electronic Structure: Principles and Applications (ESPA 2012).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kroto HW, Heath JR, O’Brien SC, Curl RF, Smalley RE (1985) Nature 318:162

    Article  CAS  Google Scholar 

  2. Kadish K, Ruoff R (2000) Fullerenes: chemistry, physics, and technology. Wiley, New York

    Google Scholar 

  3. Haddon RC, Hebard AF, Rosseinsky MJ, Murphy DW, Duclos SJ, Lyons KB, Miller B, Rosamilia JM, Fleming RM, Kortan AR, Glarum SH, Makhija AV, Muller AJ, Eick RH, Zahurak SM, Tycko R, Dabbagh G, Thiel FA (1991) Nature 350:320

    Article  CAS  Google Scholar 

  4. Rosseinsky MJ, Ramirez AP, Glarum SH, Murphy DW, Haddon RC, Hebard AF, Palstra TTM, Kortan AR, Zahurak SM, Makhija AV (1991) Phys Rev Lett 66:2830

    Article  CAS  Google Scholar 

  5. Sun Q, Jena P, Wang Q, Marquez M (2006) J Am Chem Soc 128(30):9741

    Article  CAS  Google Scholar 

  6. Gerhardt P, Lffler S, Homann K (1987) Chem Phys Lett 137(4):306

    Article  CAS  Google Scholar 

  7. Kroto HW (1987) Nature 329:529

    Article  CAS  Google Scholar 

  8. Fowler PW (1996) Contemp Phys 37:235

    Article  CAS  Google Scholar 

  9. Fowler PW, Heine T, Mitchell D, Orlandi G, Schmidt R, Seifert G, Zerbetto F (1996) J Chem Soc Faraday Trans 92:2203

    Article  CAS  Google Scholar 

  10. Schmalz TG, Seitz WA, Klein DJ, Hite GE (1988) J Am Chem Soc 110:1113

    Article  CAS  Google Scholar 

  11. Albertazzi E, Domene C, Fowler PW, Heine T, Seifert G, Alsenow CV, Zerbetto F (1999) Chem Chem Phys 1:2913

    Article  CAS  Google Scholar 

  12. Ayuela A, Fowler PW, Mitchell D, Schmidt R, Seifert G, Zerbetto F (1996) J Phys Chem 100:15634

    Article  CAS  Google Scholar 

  13. Campbell EEB, Fowler PW, Mitchell D, Zerbetto F (1996) Chem Phys Lett 250:544

    Article  CAS  Google Scholar 

  14. Lu X, Chen Z, Thiel W, Schleyer P, Huang R, Zheng L (2004) J Am Chem Soc 126:14871

    Article  CAS  Google Scholar 

  15. Zhechkov L, Heine T, Seifert G (2004) J Phys Chem A 108:11733

    Article  CAS  Google Scholar 

  16. Diaz-Tendero S, Alcami M, Martin F (2005) Chem Phys Lett 407:153

    Article  CAS  Google Scholar 

  17. Buhl M, Hirsch A (2001) Chem Rev 101:1153

    Article  CAS  Google Scholar 

  18. Martin TP, Malinowski N, Zimmermann U, Naher U, Schaber H (1993) J Chem Phys 99:4210

    Article  CAS  Google Scholar 

  19. Rabilloud F (2010) J Phys Chem A 114:7241

    Article  CAS  Google Scholar 

  20. Hamamoto N, Jitsukawa J, Satoko C (2002) Eur Phys J D 19:211

    CAS  Google Scholar 

  21. Tachikawa H (2007) J Phys Chem C 111(35):13087

    Article  CAS  Google Scholar 

  22. Tachikawa H (2011) J Phys Chem C 115(42):20406

    Article  CAS  Google Scholar 

  23. Bernshtein V, Oref I (2001) Phys Rev A 63:043201

    Article  Google Scholar 

  24. Santos J, Bulhoes L, Longo E, Varela J (1995) J Mol Struct Theochem 335:149

    Article  CAS  Google Scholar 

  25. Zhao Y, Pan X, Zhou D, Su Z, Wang R (2003) Synth Met 227:135–136

    Google Scholar 

  26. Wang Q, Jena P (2012) J Phys Chem Lett 3(9):1084

    Article  Google Scholar 

  27. Schon JH, Kloc C, Siegrist T, Steigerwald M, Svensson C, Batlogg B (2001) Nature 413(6858):831

    Article  CAS  Google Scholar 

  28. Takenobu T, Iwasa Y, Ito T, Mitani T (2001) AIP Conf Proc 590(1):385

    Article  CAS  Google Scholar 

  29. Palpant B, Otake A, Hayakawa F, Negishi Y, Lee GH, Nakajima A, Kaya K (1999) Phys Rev B 60:4509

    Article  CAS  Google Scholar 

  30. Xie SY, Gao F, Lu X, Huang RB, Wang CR, Zhang X, Liu ML, Deng SL, Zheng LS (2004) Science 304(5671):699

    Article  CAS  Google Scholar 

  31. Abboud JLM, Alkorta I, Davalos JZ, Gal JF, Herreros M, Maria PC, Mo O, Molina MT, Notario R, Yañez M (2000) J Am Chem Soc 122(18):4451

    Article  CAS  Google Scholar 

  32. Irigoras A, Mercero JM, Silanes I, Ugalde JM (2001) J Am Chem Soc 123(21):5040

    Article  CAS  Google Scholar 

  33. Rodriguez-Otero J, Cabaleiro-Lago EM, na~Gallego AP, Montero- Campillo MM (2009) Tetrahedron 65(11):2368

    Google Scholar 

  34. Becke AD (1993) J Chem Phys 98:5648

    Article  CAS  Google Scholar 

  35. Lee C, Yang W, Parr RG (1988) Phys Rev B 37:785

    Article  CAS  Google Scholar 

  36. Haser M, Almof J, Scuseria GE (1991) Chem Phys Lett 181(6):497

    Article  CAS  Google Scholar 

  37. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö , Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian~ 09 Revision B.01 (2010). Gaussian Inc., Wallingford CT

    Google Scholar 

  38. Keith TA AIMAll 11.10.16 (2011) http://aim.tkgristmill.com/ . TK Gristmill Software

  39. Foster JP, Weinhold F (1980) J Am Chem Soc 102:7211

    Article  CAS  Google Scholar 

  40. Reed AE, Weinhold F (1983) J Chem Phys 78:4066

    Article  CAS  Google Scholar 

  41. Reed AE, Curtiss LA, Weinhold F (1988) Chem Rev 88(6):899

    Article  CAS  Google Scholar 

  42. Glendening ED, Reed AE, Carpenter JE, Weinhold F NBO Version 3.1. http://www.gaussian.com/g_tech/g_ur/m_citation.htm

    Google Scholar 

  43. Bader RFW (1991) Chem Rev 91(5):893

    Article  CAS  Google Scholar 

  44. Bader RFW (1994) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergio Díaz-Tendero .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Robledo, M., Martín, F., Alcamí, M., Díaz-Tendero, S. (2014). Exohedral interaction in cationic lithium metallofullerenes. In: Novoa, J., Ruiz López, M. (eds) 8th Congress on Electronic Structure: Principles and Applications (ESPA 2012). Highlights in Theoretical Chemistry, vol 5. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41272-1_11

Download citation

Publish with us

Policies and ethics