Skip to main content

Label Semantics Theory

  • Chapter
  • 1299 Accesses

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

Abstract

As we have discussed in Chapter 1, modeling real world problems typically involves processing two distinct types of uncertainty. These are, firstly, uncertainty arising from a lack of knowledge relating to concepts which, in the sense of classical logic, may be well defined and, secondly, uncertainty due to inherent vagueness in concepts themselves. Traditionally, these two types of uncertainties are modeled in terms of probability theory and fuzzy set theory, respectively, though, Zadeh recently pointed out that all the approaches for uncertainty modeling can be unified into a general theory of uncertainty (GTU)[1]. The first type of uncertainty has been a focus of Bayesian probabilistic models[2]. The most recent advancement in machine learning has been about using using hierarchical Bayesian generative models to describe data.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD   109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Zadeh L. A.: Toward a generalized theory of uncertainty (GTU)- an outline, Information Sciences, 172/1–2, pp. 1–40. (2005).

    Article  MathSciNet  Google Scholar 

  2. Jaynes E. T.: Probability Theory: The Logic of Science. Cambridge University Press, (2003).

    Google Scholar 

  3. Zadeh L. A.: Fuzzy sets, Information and Control, 8: pp. 338–353. (1965).

    Article  MathSciNet  MATH  Google Scholar 

  4. http://en.wikipedia.org/wiki/Parmenides, accessed on January 19, (2011).

    Google Scholar 

  5. Klir G. J., Yuan B.: Fuzzy Sets and Fuzzy Logic, Prentice Hall. (1995).

    Google Scholar 

  6. Jang J. S. R., Sun C. T., Mizutani E.: Neuro-Fuzzy and Soft Computing, Prentice-Hall, Inc. Simon & Schuster. (1997).

    Google Scholar 

  7. Zadeh L. A.: Fuzzy logic = computing with words, IEEE Transaction on Fuzzy Systems. 4(2): pp. 103–111. (1996).

    Article  MathSciNet  Google Scholar 

  8. Zadeh L. A.: Precisiated natural language (PNL), AI Magazine, 25(3), pp. 74–91. (2004).

    Google Scholar 

  9. Qin Z., Thint M., Beg M. M. S.: Deduction engine designs for PNL-based question answering systems, Foundations of Fuzzy Logic and Soft Computing, Lecture Notes in Artificial Intelligence 4529, pp. 253–262, Springer. (2007).

    Google Scholar 

  10. Beg M. M. S., Thint M., Qin Z.: PNL-enhanced restricted domain question answering system, the Proceedings of IEEE-FUZZ, pp. 1277–1283, London, IEEE Press. (2007).

    Google Scholar 

  11. Baldwin J. F., Martin T. P., Pilsworth B. W.: Fril-Fuzzy and Evidential Reasoning in Artificial Intelligence, John Wiley & Sons Inc. (1995).

    Google Scholar 

  12. Baldwin J. F.: Lecture Notes in Computational Intelligence. Department of Engineering Mathematics, University of Bristol. (2001)–(2002).

    Google Scholar 

  13. Lawry J.: A framework for linguistic modelling, Artificial Intelligence, 155: pp. 1–39. (2004).

    Article  MathSciNet  MATH  Google Scholar 

  14. Dubois D., Prade H., Yager R.R.: Information engineering and fuzzy logic. Proceedings of 5th IEEE International Conference on Fuzzy Systems, pp. 1525–1531.(1996).

    Google Scholar 

  15. Williamson T.: Vagueness, Routledge. (1994).

    Google Scholar 

  16. Lawry J.: Modelling and Reasoning with Vague Concepts, Springer. (2006).

    Google Scholar 

  17. Lawry J.: Appropriateness measures: an uncertainty model for vague concepts. Synthese, 161:2, pp. 255–269. (2008).

    Article  MathSciNet  MATH  Google Scholar 

  18. Lawry J.: Label semantics: A formal framework for modelling with words. Symbolic and Quantitative Approaches to Reasoning with Uncertainty, LNAI 2143: pp. 374–384, Springer-Verlag. (2001).

    Google Scholar 

  19. Lawry J.: A voting mechanism for fuzzy logic, International Journal of Approximate Reasoning 19, pp. 315–333. (1998).

    Article  MathSciNet  MATH  Google Scholar 

  20. Qin Z., Lawry J.: Decision tree learning with fuzzy labels, Information Sciences, 172/1–2: pp. 91–129. (2005).

    Article  MathSciNet  Google Scholar 

  21. Blake C., Merz C. J.: UCI machine learning repository.

    Google Scholar 

  22. Mitchell T.: Machine Learning, McGraw-Hill, New York. (1997).

    MATH  Google Scholar 

  23. Fayyad U. M., Irani K. B.:Multi-interval discretization of continuous-valued attributes for classification learning, Proceedings of the Thirteenth International Joint Conference on Artificial Intelligence, 2, Chambery, France. (1993).

    Google Scholar 

  24. Lawry J., Hall J. W., Bovey R.: Fusion of expert and learnt knowledge in a framework of fuzzy labels, Journal of Approximate Reasoning, 36: pp. 151–198. (2004).

    Article  MathSciNet  Google Scholar 

  25. Shafer G.: A Mathematical Theory of Evidence, Princeton University Press. (1976).

    Google Scholar 

  26. Lawry J., He H.: Linguistic attribute hierarchies for multiple-attribute decision making, Proceedings of IEEE-FUZZ, (2007).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Qin, Z., Tang, Y. (2014). Label Semantics Theory. In: Uncertainty Modeling for Data Mining. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41251-6_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41251-6_3

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41250-9

  • Online ISBN: 978-3-642-41251-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics