Skip to main content

Part of the book series: Advanced Topics in Science and Technology in China ((ATSTC))

  • 1299 Accesses

Abstract

Induction is fundamental to the acquisition of human knowledge. Twenty-four centuries ago, Plato raised the point that people have much more knowledge than what appears to be present in the information to which they have been exposed. Chomsky referred to it as Plato’s problem to describe the gap between knowledge and experience[1]. Induction can be regarded as an important property of intelligence. Human beings have the ability of generalizing from already known cases to new unknown cases with which they share similarities or patterns. Actually, people have been seeking patterns in data throughout human history. Hunters seek patterns in animal migration behavior in order to hunt for survival, farmers seek patterns in crop growth in order to feed themselves and their families, businessmen seek patterns from markets to make profit, and politicians seek patterns in voter opinions in order to be elected. A scientist’s job is to make sense of observed evidence (or data) in order to discover the patterns that govern how the physical world works and encapsulate them in theories that can be used for predicting what will happen in the future. Scientists are the first group of people who woke up and dared to argue with the followers of the Almighty on the issues such as the earth is not the center of the universe and human beings, like all other species, have evolved to what they are today. The powerful tool they have been employing, so called science, is based on such a hypothesis-evidence paradigm. With the development of new measuring tools, we can always find more new evidence about the nature and our hypothesis spaces have been updated again and again by those giants like Copernicus, Newton, Maxwell, Darwin and Einstein.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. http://en.wikipedia.org/wiki/Plato’s_Problem, accessed on March 01, (2011).

    Google Scholar 

  2. Bensusan H.: Is machine learning experimental philosophy of science? ECAI Workshop on Scientific Reasoning in AI and Philosophy of Science. (2000).

    Google Scholar 

  3. Nilsson N. J.: Introduction to Machine Learning, Unpublished book drafts. (1996).

    Google Scholar 

  4. http://en.wikipedia.org/wiki/Herbert_Simon, accessed on March 23, 2011.

    Google Scholar 

  5. Penrose R.: The Emperor’s New Mind: Concerning Computers, Minds, and the Laws of Physics, Oxford Univ. Press. (1989).

    Google Scholar 

  6. Searle J.: Minds, brains and programs, Behavioral and Brain Sciences, 3(3): pp. 417–517. (1980).

    Article  Google Scholar 

  7. Langley P.: Element of Machine Learning, Morgan Kaufmann Pub. Inc. (1996).

    Google Scholar 

  8. Mjolsness E., DeCoste D.: Machine learning for science: state of the art and future prospects, Science, 293: pp. 2051–2055. (2001).

    Article  Google Scholar 

  9. http://en.wikipedia.org/wiki/Version_space, accessed on April 11, (2011).

    Google Scholar 

  10. Blei D., Ng A., Jordan M.: Latent Dirichlet allocation. Journal of Machine Learning Research 3: pp. 993–1022. (2003).

    MATH  Google Scholar 

  11. Griffiths T., Steyvers M.: Finding scientific topics, Proceedings of the National Academy of Sciences, 101 (Suppl. 1): pp. 5228–5235. (2004).

    Article  Google Scholar 

  12. Qin Z., Thint M., Huang Z.: Ranking answers by hierarchical topic models, Proceedings of The 22nd International Conference on Industrial, Engineering & Other Applications of Applied Intelligent Systems (IEA/AIE), LNAI5579, pp. 103–112, Springer. (2009).

    Google Scholar 

  13. Rasiwasia N., Pereira J. C., Coviello E., Doyle G., Lanckriet G R. G., Levy R., Vasconcelos N.: A new approach to cross-modal multimedia retrieval, ACM-Multimedia. 2010.

    Google Scholar 

  14. Wan T., Qin Z.: An application of compressive sensing for image fusion. Proceedings of the 9th ACM International Conference on Image and Video Retrieval (CIVR 2010), pp. 3–9. (2010).

    Google Scholar 

  15. Rogers S., Girolami M., Campbell C., Breitling R.: he latent process decomposition of cDNA microarray data sets, ACM Trans. on Computational Biology and Bioinformatics, 2(2), April–June. (2005).

    Google Scholar 

  16. Turnbull O., Richards A., Lawry J., Lowenburg M.: Fuzzy decision tree cloning of flight trajectory optimisation for rapid path planning. Proceedings of 45th IEEE Conference on Decision and Control, pp. 6361–6366. (2006).

    Google Scholar 

  17. Liao R., Wang X., Li L., Qin Z.: A novel serial crime prediction model based on Bayesian learning theory. International Conference on Machine Learning and Cybernetics (ICMLC 2010), pp. 1757–1762. 2010.

    Google Scholar 

  18. Dietterich T. G.: Machine-learning research: four current directions. AI Magazine, AAAI, Winter. (1997).

    Google Scholar 

  19. Ma Y., Li G., Dong Y., Qin Z.: Minority game data mining for stock market predictions, Agents and Data Mining Interaction, 6th International Workshop on Agents and Data Mining Interaction (ADMI 2010), LNCS 5980, pp. 178–189. (2010).

    Google Scholar 

  20. http://en.wikipedia.org/wiki/Francis_Crick, accessed on March 16, (2011).

    Google Scholar 

  21. Mitchell T.: Machine Learning, McGraw-Hill, New York. (1997).

    MATH  Google Scholar 

  22. http://en.wikipedia.org/wiki/Ray_Solomonoff, accessed on April 11, (2011).

    Google Scholar 

  23. Kirchherr W., Li M., Vitányi P.: The miraculous universal distribution, Mathematical Intelligencer, 19(4), pp. 7–15. (1997).

    Article  MathSciNet  MATH  Google Scholar 

  24. Bishop C. M.: Neural Networks for Pattern Recognition. Oxford Uni. Press. (1995).

    Google Scholar 

  25. http://en.wikipedia.org/wiki/Curse_of_dimensionality, accessed on Feb 08, (2011).

    Google Scholar 

  26. Zhu X., Goldberg A. B.: Introduction to semi-supervised learning, Synthesis Lectures on Artificial Intelligence and Machine Learning 3:1, 1–130, Morgan & Claypool Publishers. (2009).

    Article  Google Scholar 

  27. Duda R., Hart P. E., Stork D. G.: Pattern Classification, Second Edition. John Wiley & Sons. (2001).

    Google Scholar 

  28. Hand D., Till R. J.: A simple generalization of the area under the ROC curve for multiple class classification problems, Machine Learning, 45, pp. 171–186. (2001).

    Article  MATH  Google Scholar 

  29. Berry M. J. A., Linoff G.: Data Mining Techniques for Marketing, Sales, and Customer Support, John Wiley & Sons. (1997).

    Google Scholar 

  30. Flach P. A.: On the state of the art in machine learning, Artificial Intelligence, 131: pp. 199–222. (2001).

    Article  MathSciNet  MATH  Google Scholar 

  31. Bezdek J. C., Keller J. M., Krishnapuram R., and Pal N.: Fuzzy models and algorithms for pattern recognition and image processing. The Handbooks on Fuzzy Sets, Netherlands, (1999).

    Google Scholar 

  32. http://en.wikipedia.org/wiki/Data_clustering, accessed on March 30, 2011.

    Google Scholar 

  33. Ghahramani Z.: Unsupervised learning, Bousquet O., Raetsch G., and von Luxburg U.(Eds.), Advanced Lectures on Machine Learning, LNAI3176, Springer. (2004).

    Google Scholar 

  34. Roweis S. T., Saul L. K.: Nonlinear dimensionality reduction by locally linear embedding, Science, 290: pp. 2323–2326. (2000).

    Article  Google Scholar 

  35. Kang P., Cho S.: Locally linear for reconstruction for instance-based learning, Pattern Recognition, 41: pp. 3507–3518. (2008).

    Article  MATH  Google Scholar 

  36. Adriaans P., Zantinge D.: Data Mining, UK Addison Wesley Longman. (1996).

    Google Scholar 

  37. CRISP-DM 1.0: step-by-step data mining guide. SPSS Inc, (1999), (2000).

    Google Scholar 

  38. Zhou Z. H.: Three perspectives of data mining, Artificial Intelligence, 143, 1 :139–146. (2003).

    Article  MATH  Google Scholar 

  39. Blake C., Merz C. J.: UCI machine learning repository.

    Google Scholar 

  40. McCulloch W. S., Pitts W.: A logical calculus of the ideas immanent in nervous activity. Bulletin of Mathematical Biophysics 5: pp. 115–133. (1943).

    Article  MathSciNet  MATH  Google Scholar 

  41. Minsky M., Papert S.: Perceptrons, MIT Press, Cambridge, MA. (1969).

    MATH  Google Scholar 

  42. Berthold M., Hand D. J., Ed., Intelligent Data Analysis, Springer. Berlin Heidelberg. (1999).

    MATH  Google Scholar 

  43. Pollack J. B.: Connectionism: past, present and future, Artificial Intelligence Review, 3: pp. 3–20. (1989).

    Article  Google Scholar 

  44. Rumelhart D. E., McClelland J. L.: Parallel Distributed Processing: Exploration in the Microstructure of Cognition, MIT Press, Cambridge, MA. (1987).

    Google Scholar 

  45. Russell S. J., Norvig P.: Artificial Intelligence-a morden approach, Prentice-Hall, Inc., A Simon & Schuster Company, New Jersey. (1995).

    Google Scholar 

  46. Hertz J., Krogh A., Palmer R. G.: Introduction to The Theory of Neural Computation, Addison-Wesley. (1992).

    Google Scholar 

  47. Vapnik V.: Statistical Learning Theory, New York: Wiley, (1998).

    MATH  Google Scholar 

  48. Provost F., Fawcett T.: Robust classification for imprecise environments. Machine Learning. 42, pp. 203–231. (2001).

    Article  MATH  Google Scholar 

  49. Provost F., Fawcett T., Kohavi R.: The case against accuracy estimation for comparing induction algorithms, In J. Shavlik, editor, Prced. of ICML98, pp. 445–453. (1998).

    Google Scholar 

  50. Fawcett T.: ROC graphs: notes and practical considerations for data mining researchers, HP Technical Report HPL-2003-4, HP Laboratories. (2003).

    Google Scholar 

  51. Flach P. A.: The geometry of ROC space: understanding machine learning metrics through ROC isometrics, Proceedings of the ICML-04. (2004).

    Google Scholar 

  52. Flach P. A.: The many faces of ROC analysis in machine learning, http://www.cs.bris.ac.uk/∼flach/ICML04tutorial/index.html.

    Google Scholar 

  53. Provost F., Domingos P.: Tree induction for probability-based ranking, Machine Learning, 52, pp. 199–215. (2003).

    Article  MATH  Google Scholar 

  54. Ling C. X., Huang L., Zhang H.: AUC: a statistically consistent and more discriminating measure than accuracy, Proceedings of IJCAI. (2003).

    Google Scholar 

  55. Swets J. A., Dawes R. M., Monahan J.: Better decisions through science. Scientific American, 283: pp. 82–87, October. (2000).

    Article  Google Scholar 

  56. Zadrozny B., Elkan C.: Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers, Proceedings of ICML-01. (2001).

    Google Scholar 

  57. Keogh E., Smyth P.: A probabilistic approach to fast pattern matching in time series databases, Proceedings of the 3rd International Conference of Knowledge Discovery and Data Mining, pp. 24–20. (1997).

    Google Scholar 

  58. Keogh E.: Mining and indexing time series data, Tutorial of (2001) IEEE International Conference on Data Mining, San Jose, California. (2001).

    Google Scholar 

  59. Lawry J., Han D., Cluckie I.D.: Fuzzy rule generation in hydrological modelling, Soft Methodology and Random Information Systems-Proceedings of the 2nd International Conference on Soft Methods in Probability and Statistics (SMPS’2004), Springer. (2004).

    Google Scholar 

  60. Qin Z., Lawry J.: Prediction trees using linguistic modelling, to appear in the Proceedings of International Fuzzy Association World Congress-05, September 2005, Beijing, China. (2005).

    Google Scholar 

  61. Randon N. J.: Fuzzy and Random Set Based Induction Algorithms, PhD Thesis, Department of Engineering Mathematics, University of Bristol. (2004).

    Google Scholar 

  62. Bolton R. L., Hand D. J.: Statistical fraud detection: A review. Statistical Science, 17(3), pp. 235–255. (2002).

    Article  MathSciNet  MATH  Google Scholar 

  63. Borgelt C., Berthold M. R., Patterson D. E.: Molecular fragment mining for drug discovery, Lluis Godo (Ed.) Symbolic and Quantitative Approaches to Reasoning with Uncertainty, 8th European Conference, ECSQARU 2005, LNAI 3571, pp. 1002–1013. (2005).

    Google Scholar 

  64. Morent D., Patterson D. E., Berthold M.: Towards context-aware similarity metrics, Proceedings of the International Conference on Machine Learning and Cybernetics-2005. (2005).

    Google Scholar 

  65. Mackay D. J. C.: Information Theory, Inference, and Learning Algorithms, Cambridge University Press. (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2014 Zhejiang University Press, Hangzhou and Springer-Verlag Berlin Heidelberg

About this chapter

Cite this chapter

Qin, Z., Tang, Y. (2014). Induction and Learning. In: Uncertainty Modeling for Data Mining. Advanced Topics in Science and Technology in China. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-642-41251-6_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-642-41251-6_2

  • Publisher Name: Springer, Berlin, Heidelberg

  • Print ISBN: 978-3-642-41250-9

  • Online ISBN: 978-3-642-41251-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics