Dynamic Attribute Based Group Signature with Attribute Anonymity and Tracing in the Standard Model

  • Syed Taqi Ali
  • B. B. Amberker
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8204)


Attribute Based Group Signature (ABGS) scheme is a kind of group signature scheme where the group members possessing certain privileges (attributes) only are eligible for signing the document. There are ABGS schemes proposed in the literature which do not provide Attribute Anonymity, a desirable feature to achieve, in the standard model. We have come up with an ABGS scheme which provides attribute anonymity along with an Attribute Tracing feature secure under standard model. It also achieves constant size signature.


Group signature attribute based attribute anonymity attribute tracing standard model 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Bellare, M., Palacio, A.: The knowledge-of-exponent assumptions and 3-round zero-knowledge protocols. In: Franklin (ed.) [14], pp. 273–289Google Scholar
  2. 2.
    Bellare, M., Shi, H., Zhang, C.: Foundations of group signatures: The case of dynamic groups. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 136–153. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  3. 3.
    Blazy, O., Fuchsbauer, G., Pointcheval, D., Vergnaud, D.: Signatures on randomizable ciphertexts. In: Catalano, et al. (eds.) [8], pp. 403–422Google Scholar
  4. 4.
    Blazy, O., Pointcheval, D.: Traceable signature with stepping capabilities. In: Naccache, D. (ed.) Quisquater Festschrift. LNCS, vol. 6805, pp. 108–131. Springer, Heidelberg (2012)Google Scholar
  5. 5.
    Boneh, D., Boyen, X., Shacham, H.: Short group signatures. In: Franklin (ed.) [14], pp. 41–55Google Scholar
  6. 6.
    Boyen, X., Waters, B.: Full-domain subgroup hiding and constant-size group signatures. In: Okamoto, T., Wang, X. (eds.) PKC 2007. LNCS, vol. 4450, pp. 1–15. Springer, Heidelberg (2007)CrossRefGoogle Scholar
  7. 7.
    Camenisch, J., Stadler, M.: Efficient group signature schemes for large groups. In: Kaliski Jr., B.S. (ed.) CRYPTO 1997. LNCS, vol. 1294, pp. 410–424. Springer, Heidelberg (1997)CrossRefGoogle Scholar
  8. 8.
    Catalano, D., Fazio, N., Gennaro, R., Nicolosi, A. (eds.): PKC 2011. LNCS, vol. 6571. Springer, Heidelberg (2011)zbMATHGoogle Scholar
  9. 9.
    Chaum, D., van Heyst, E.: Group signatures. In: EUROCRYPT, pp. 257–265 (1991)Google Scholar
  10. 10.
    Delerablée, C., Pointcheval, D.: Dynamic fully anonymous short group signatures. In: Nguyên, P.Q. (ed.) VIETCRYPT 2006. LNCS, vol. 4341, pp. 193–210. Springer, Heidelberg (2006)CrossRefGoogle Scholar
  11. 11.
    Dodis, Y., Yampolskiy, A.: A verifiable random function with short proofs and keys. In: Vaudenay, S. (ed.) PKC 2005. LNCS, vol. 3386, pp. 416–431. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  12. 12.
    Emura, K., Miyaji, A., Omote, K.: A dynamic attribute-based group signature scheme and its application in an anonymous survey for the collection of attribute statistics. JIP 17(1), 216–231 (2009)Google Scholar
  13. 13.
    Escala, A., Herranz, J., Morillo, P.: Revocable attribute-based signatures with adaptive security in the standard model. In: Nitaj, A., Pointcheval, D. (eds.) AFRICACRYPT 2011. LNCS, vol. 6737, pp. 224–241. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  14. 14.
    Franklin, M. (ed.): CRYPTO 2004. LNCS, vol. 3152. Springer, Heidelberg (2004)zbMATHGoogle Scholar
  15. 15.
    Galbraith, S.D., Paterson, K.G., Smart, N.P.: Pairings for cryptographers. Discrete Applied Mathematics 156(16), 3113–3121 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Goyal, V., Pandey, O., Sahai, A., Waters, B.: Attribute-based encryption for fine-grained access control of encrypted data. In: ACM Conference on Computer and Communications Security, pp. 89–98. ACM (2006)Google Scholar
  17. 17.
    Groth, J., Sahai, A.: Efficient non-interactive proof systems for bilinear groups. In: Smart, N.P. (ed.) EUROCRYPT 2008. LNCS, vol. 4965, pp. 415–432. Springer, Heidelberg (2008)CrossRefGoogle Scholar
  18. 18.
    Hada, S., Tanaka, T.: On the existence of 3-round zero-knowledge protocols. In: Krawczyk (ed.) [24], pp. 408–423Google Scholar
  19. 19.
    Herranz, J., Laguillaumie, F., Libert, B., Ràfols, C.: Short attribute-based signatures for threshold predicates. In: Dunkelman, O. (ed.) CT-RSA 2012. LNCS, vol. 7178, pp. 51–67. Springer, Heidelberg (2012)CrossRefGoogle Scholar
  20. 20.
    Hirschfeld, R. (ed.): FC 1998. LNCS, vol. 1465. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  21. 21.
    Khader, D.: Attribute based group signature with revocation. IACR Cryptology ePrint Archive 2007, 241 (2007)Google Scholar
  22. 22.
    Khader, D.: Attribute based group signatures. IACR Cryptology ePrint Archive 2007, 159 (2007)Google Scholar
  23. 23.
    Kilian, J., Petrank, E.: Identity escrow. In: Krawczyk (ed.) [24], pp. 169–185Google Scholar
  24. 24.
    Krawczyk, H. (ed.): CRYPTO 1998. LNCS, vol. 1462. Springer, Heidelberg (1998)zbMATHGoogle Scholar
  25. 25.
    Maji, H.K., Prabhakaran, M., Rosulek, M.: Attribute-based signatures. In: Kiayias, A. (ed.) CT-RSA 2011. LNCS, vol. 6558, pp. 376–392. Springer, Heidelberg (2011)CrossRefGoogle Scholar
  26. 26.
    Okamoto, T., Takashima, K.: Efficient attribute-based signatures for non-monotone predicates in the standard model. In: Catalano, et al. (eds.) [8], pp. 35–52Google Scholar
  27. 27.
    Song, D.X.: Practical forward secure group signature schemes. In: ACM Conference on Computer and Communications Security, pp. 225–234 (2001)Google Scholar
  28. 28.
    Waters, B.: Efficient identity-based encryption without random oracles. In: Cramer, R. (ed.) EUROCRYPT 2005. LNCS, vol. 3494, pp. 114–127. Springer, Heidelberg (2005)CrossRefGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Syed Taqi Ali
    • 1
  • B. B. Amberker
    • 1
  1. 1.National Institute of Technology WarangalKazipetIndia

Personalised recommendations