Advertisement

Anonymous Identity-Based Identification Scheme in Ad-Hoc Groups without Pairings

  • Prateek Barapatre
  • Chandrasekaran Pandu Rangan
Conference paper
Part of the Lecture Notes in Computer Science book series (LNCS, volume 8204)

Abstract

Anonymous identification schemes in ad-hoc groups are cryptographic primitives that allow a participant from a set of users to prove her identity in that group, without revealing her actual identity or the group secret key. All the existing ad-hoc anonymous identification schemes in the literature make use of the bilinear pairing operation, resulting in a computational overhead. In this paper we propose a novel anonymous identity-based identification scheme for ad-hoc groups without using bilinear pairings. This scheme, to the best of our knowledge, is the first of its kind which does not use pairing operations. The proof of our scheme is based on the hardness assumption of RSA problem.

Keywords

Identity-based identification Anonymity Ad-hoc group RSA assumption 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fiat, A., Shamir, A.: How to prove yourself: Practical solutions to identification and signature problems. In: Odlyzko, A.M. (ed.) CRYPTO 1986. LNCS, vol. 263, pp. 186–194. Springer, Heidelberg (1987)CrossRefGoogle Scholar
  2. 2.
    Fiege, U., Fiat, A., Shamir, A.: Zero knowledge proofs of identity. In: Proceedings of the Nineteenth Annual ACM Symposium on Theory of Computing, pp. 210–217. ACM (1987)Google Scholar
  3. 3.
    Beth, T.: Efficient zero-knowledged identification scheme for smart cards. In: Günther, C.G. (ed.) EUROCRYPT 1988. LNCS, vol. 330, pp. 77–84. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  4. 4.
    Schnorr, C.-P.: Efficient Signature Generation by Smart Cards. J. Cryptology 4(3), 161–174 (1991)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Dodis, Y., Kiayias, A., Nicolosi, A., Shoup, V.: Anonymous Identification in Ad Hoc Groups. In: Cachin, C., Camenisch, J.L. (eds.) EUROCRYPT 2004. LNCS, vol. 3027, pp. 609–626. Springer, Heidelberg (2004)CrossRefGoogle Scholar
  6. 6.
    Nguyen, L.: Accumulators from bilinear pairings and applications. In: Menezes, A. (ed.) CT-RSA 2005. LNCS, vol. 3376, pp. 275–292. Springer, Heidelberg (2005)CrossRefGoogle Scholar
  7. 7.
    Gu, C., Zhu, Y., Ma, C.: An Efficient Identity Based Anonymous Identification Scheme for Ad-Hoc Groups from Pairings. In: 4th International Conference on Wireless Communications, Networking and Mobile Computing, WiCOM 2008, pp. 1–3 (October 2008)Google Scholar
  8. 8.
    Herranz, J.: Identity-based ring signatures from RSA. Theoretical Computer Science 389(1–2), 100–117 (2007)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Bellare, M., Palacio, A.: GQ and schnorr identification schemes: Proofs of security against impersonation under active and concurrent attacks. In: Yung, M. (ed.) CRYPTO 2002. LNCS, vol. 2442, pp. 162–177. Springer, Heidelberg (2002)CrossRefGoogle Scholar
  10. 10.
    Bellare, M., Namprempre, C., Neven, G.: Security Proofs for Identity-Based Identification and Signature Schemes. J. Cryptol. 22(1), 1–61 (2008)MathSciNetCrossRefGoogle Scholar
  11. 11.
    Guillou, L.C., Quisquater, J.-J.: A Practical Zero-Knowledge Protocol Fitted to Security Microprocessor Minimizing Both Transmission and Memory. In: Barstow, D., et al. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 123–128. Springer, Heidelberg (1988)CrossRefGoogle Scholar
  12. 12.
    Coron, J.S.: On the Exact Security of Full Domain Hash (2000)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  • Prateek Barapatre
    • 1
  • Chandrasekaran Pandu Rangan
    • 1
  1. 1.Theoretical Computer Science Lab., Department of Computer Science and EngineeringIIT MadrasChennaiIndia

Personalised recommendations